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2. Prof. Douglas R. Shier, PhD

3. Prof. Dr. Hans Jürgen Prömel
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Chapter 1

Introduction and Overview

Many problems in combinatorics, number theory, probability theory, reliability
theory and statistics can be solved by applying a unifying method, which is
known as the principle of inclusion-exclusion. The principle of inclusion-exclusion
expresses the indicator function of a union of finitely many sets as an alternating
sum of indicator functions of their intersections. More precisely, for any finite
family of sets {Av}v∈V the classical principle of inclusion-exclusion states that

χ

( ⋃
v∈V

Av

)
=
∑
I⊆V
I 6=∅

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
,(1.1)

where χ(A) denotes the indicator function of A with respect to some ground
set Ω, that is, χ(A)(ω) = 1 if ω ∈ A, and χ(A)(ω) = 0 if ω ∈ Ω\A. Equivalently,
(1.1) can be expressed as χ

(⋂
v∈V {Av

)
=
∑

I⊆V (−1)|I|χ
(⋂

i∈I Ai

)
, where {Av

denotes the complement of Av in Ω and
⋂

i∈∅ Ai = Ω. A proof by induction on
the number of sets is a common task in undergraduate courses. Usually, the Av’s
are measurable with respect to some finite measure µ on a σ-field of subsets of Ω.
Integration of the indicator function identity (1.1) with respect to µ then gives

µ

( ⋃
v∈V

Av

)
=
∑
I⊆V
I 6=∅

(−1)|I|−1 µ

(⋂
i∈I

Ai

)
,(1.2)

which now expresses the measure of a union of finitely many sets as an alternating
sum of measures of their intersections. The step leading from (1.1) to (1.2) is
referred to as the method of indicators [GS96b]. Naturally, two special cases are
of particular interest, namely the case where µ is the counting measure on the
power set of Ω and the case where µ is a probability measure on a σ-field of
subsets of Ω. These special cases are sometimes attributed to Sylvester (1883)
and Poincaré (1896), although the second edition of Montmort’s book “Essai
d’Analyse sur les Jeux de Hazard”, which appeared in 1714, already contains an
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CHAPTER 1. INTRODUCTION AND OVERVIEW 2

implicit use of the method, based on a letter by N. Bernoulli in 1710. A first
explicit description of the method was given by Da Silva (1854). For references
to these sources and additional historical notes, we refer to Takács [Tak67].

Since the classical identities (1.1) and (1.2) contain 2|V |−1 terms and intersec-
tions of up to |V | sets, one often resorts to inequalities like that of Boole [Boo54]:

χ

( ⋃
v∈V

Av

)
≤
∑
i∈V

χ(Ai) .(1.3)

A more general result, first discovered by Ch. Jordan [Jor27] and later by Bon-
ferroni [Bon36], states that for any finite family of sets {Av}v∈V and any r ∈ N ,

χ

( ⋃
v∈V

Av

)
≤

∑
I⊆V

0<|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
(r odd),(1.4)

χ

( ⋃
v∈V

Av

)
≥

∑
I⊆V

0<|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
(r even).(1.5)

Nowadays, these inequalities are usually referred to as Bonferroni inequalities .
Again, there is no real restriction in using indicator functions rather than mea-
sures, since these inequalities can be integrated with respect to any finite mea-
sure µ (e.g., a probability measure) on any σ-field containing the sets Av, v ∈ V .

Numerous extensions of the classical Bonferroni inequalities (1.4) and (1.5)
were established in the second half of the 20th century. An excellent survey of
the various results, applications and methods of proof is given in the recent book
of Galambos and Simonelli [GS96b]. The following inequalities due to Galambos
[Gal75], which are valid for any finite collection of sets {Av}v∈V , improve (1.4)
and (1.5) by including additional terms based on the (r + 1)-subsets of V :

χ

( ⋃
v∈V

Av

)
≤

∑
I⊆V

0<|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
− r + 1

|V |
∑
I⊆V

|I|=r+1

χ

(⋂
i∈I

Ai

)
(r odd),

χ

( ⋃
v∈V

Av

)
≥

∑
I⊆V

0<|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
+

r + 1

|V |
∑
I⊆V

|I|=r+1

χ

(⋂
i∈I

Ai

)
(r even).

A related result due to Tomescu [Tom86] states that

χ

( ⋃
v∈V

Av

)
≤

∑
I⊆V

0<|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
−
∑

I∈Er+1

χ

(⋂
i∈I

Ai

)
(r odd),

χ

( ⋃
v∈V

Av

)
≥

∑
I⊆V

0<|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
+
∑

I∈Er+1

χ

(⋂
i∈I

Ai

)
(r even),
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where Er+1 is the edge-set of a so-called (r + 1)-hypertree.
Inequalities for the measure or indicator function of a union which are valid

for any finite collection of sets like the preceding ones are frequently referred to
as Bonferroni-type inequalities [GS96a, GS96b] or as inequalities of Bonferroni-
Galambos type [MS85, Măr89, TX89]. A new inequality of Bonferroni-Galambos
type based on chordal graphs will be established in Section 4.3 of this thesis.

The main part of this work deals with improved inclusion-exclusion identities
and improved Bonferroni inequalities that require the collection of sets to satisfy
some structural restrictions. Examples of such well-structured collections of sets
arise in some problems of statistical inference [NW92, NW97], combinatorial reli-
ability theory [Doh98b, Doh99c] and chromatic graph theory [Doh99a, Doh99d].
We shall mainly be interested in inclusion-exclusion identities of the form

χ

( ⋃
v∈V

Av

)
=
∑
I∈S

(−1)|I|−1 χ

(⋂
i∈I

Ai

)

and inequalities of type

χ

( ⋃
v∈V

Av

)
≤
∑
I∈S
|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
(r odd),(1.6)

χ

( ⋃
v∈V

Av

)
≥
∑
I∈S
|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
(r even),(1.7)

where S is a restricted set of non-empty subsets of V , and where (1.6) and (1.7) are
at least as sharp as their classical counterparts (1.4) and (1.5). A first straight-
forward approach is to account only for non-empty subsets I of V satisfying⋂

i∈I Ai 6= ∅. In fact, Lozinskii [Loz92] demonstrates that a skillful implementa-
tion of this approach leads to a reduction of the average running time of the stan-
dard inclusion-exclusion algorithm for counting satisfying assignments of propo-
sitional formulae in conjunctive normal form. In the present thesis, however, we
are interested in more subtle improvements that arise from logical dependencies
of the sets involved. Consider for instance the five sets A1–A5, whose Venn di-
agram is shown in Figure 1.1. The classical inclusion-exclusion identity for the
indicator function of the union of these sets gives a sum of 25 − 1 = 31 terms,
many of which are equal with opposite sign. After cancelling out, we are left with

χ(A1 ∪A2 ∪ A3 ∪ A4 ∪A5) = χ(A1) + χ(A2) + χ(A3) + χ(A4) + χ(A5)

− χ(A1 ∩A2)− χ(A2 ∩ A3)− χ(A3 ∩A4)− χ(A4 ∩ A5) ,

which contains only 9 terms. Our purpose is to predict such cancellations and thus
to obtain shorter inclusion-exclusion identities and sharper Bonferroni inequalities
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A2

A5A1

A4

A3

Figure 1.1: A Venn diagram of five sets.

for the indicator function of a union. Although the improved inclusion-exclusion
identities follow from the associated improved Bonferroni inequalities, we prefer
to treat the identities separately, since they can be proved in an elementary
combinatorial way, whereas the inequalities require a topological proof.

The thesis is organized as follows: In Chapter 2 we introduce some termi-
nology on graphs and partially ordered sets that will be repeatedly used in later
chapters. In Chapter 3 we bring in some relevant structures and establish several
improvements of the classical inclusion-exclusion identity. Several results from
the literature such as the semilattice sieve of Narushima [Nar74, Nar82] and the
tree sieve of Naiman and Wynn [NW92] are rediscovered in a unified way. In
Chapter 4 we give a detailed survey of the recent theory of abstract tubes, which
was initiated by Naiman and Wynn [NW92, NW97], and establish some improved
Bonferroni inequalities based on the results of this theory. The chapter concludes
with a new Bonferroni-Galambos-type inequality based on chordal graphs, itself
subsuming several other inequalities. In Chapter 5 the results are applied to reli-
ability analysis of coherent systems such as communication networks, k-out-of-n
systems and consecutive k-out-of-n systems. Among other things we rediscover
Shier’s recursive algorithm and semilattice expression for the reliability of a co-
herent system [Shi88, Shi91] and establish some related Bonferroni inequalities.
We then turn our attention to reliability covering problems and identify a compre-
hensive class of hypergraphs for which the coverage probability can be computed
in polynomial time. In Chapter 6, which is devoted to miscellaneous topics, we
give a new and simplified proof of Whitney’s broken circuit theorem on the chro-
matic polynomial of a graph [Whi32] and establish some new inequalities on that
polynomial. The results are then extended to a new two-variable polynomial that
generalizes both the chromatic polynomial and the independence polynomial of a
graph. We finally draw similar conclusions for the Tutte polynomial, the charac-
teristic polynomial and the β invariant of a matroid, the Euler characteristic of an
abstract simplicial complex and the Möbius function of a partially ordered set.



Chapter 2

Preliminaries

In this chapter we review some common notions on graphs and posets. Some
particular notions are defined later when they are first needed. Readers with
background in graph theory and lattice theory may want to skip this chapter.

2.1 Graphs

Unless stated otherwise, all graphs in this thesis are finite, undirected and without
loops or multiple edges. When directed edges or loops and multiple edges are
allowed, we respectively speak of a digraph or multigraph rather than a graph.

Definition 2.1.1 A graph is a pair G = (V, E) where V = V (G) is a finite set,
whose elements are the vertices of the graph, and where E = E(G) is a set of
two-element subsets of V , whose elements are the edges of the graph. We write
n(G) and m(G) to denote the number of vertices and edges of G, respectively.
If e = {x, y} is an edge of G, then e is said to join x and y, and x and y are
called adjacent in G. G is complete if any two distinct vertices of G are adjacent
in G. The neighborhood NG(v) of a vertex v of G is the set of all vertices w
of G such that v and w are adjacent in G; the cardinality of NG(v) is called
the degree of v. A subgraph of G is a graph G′ such that V (G′) ⊆ V (G) and
E(G′) ⊆ E(G). With any subset I of V (G) we associate the vertex-induced
subgraph G[I] := (I, {e ∈ E(G) | e ⊆ I}). Similarly, with any subset J of E(G)
we associate the edge-subgraph G[J ] :=

(⋃
J, J

)
where

⋃
J is a shorthand for⋃

j∈J j. A subset X of V (G) is independent or stable if G[X] is edgeless. A clique
of G is a subset X of V (G) such that G[X] is complete. The clique number of G
is the maximum cardinality of a clique of G. A vertex v ∈ V (G) is a simplicial
vertex of G if its neighborhood is a clique. An path between x and y or x, y-path in
G is a sequence (v1, . . . , vk) where k ≥ 1 and where v1, . . . , vk are distinct vertices
of G such that x = v1, y = vk and {vi, vi+1} ∈ E(G) for i = 1, . . . , k − 1. Two
paths (v1, . . . , vk) and (w1, . . . , wl) are independent if vi 6= wj for i = 2, . . . , k− 1
and j = 2, . . . , l − 1. A cycle of G is a sequence (v1, . . . , vk, v1) where k ≥ 3

5



CHAPTER 2. PRELIMINARIES 6

and where v1, . . . , vk are distinct vertices of G such that {vi, vi+1} ∈ E(G) for
i = 1, . . . , k−1 and {vk, v1} ∈ E(G). The length of a path (v1, . . . , vk) resp. cycle
(v1, . . . , vk, v1) is k. The girth of a graph which is not cycle-free is the length of
a shortest cycle in the graph. Throughout, paths and cycles of G are viewed as
subgraphs of G. A chord of a path P of G is an edge of G joining two vertices
of P that are not adjacent in P ; similarly for cycles. G is chordal or triangulated
if any cycle of G of length greater than three has a chord. G is connected if there
is a path between any pair of vertices of G. A connected component of G is a
maximal connected subgraph of G. The number of connected components of G
is denoted by c(G). G is biconnected if there are at least two independent paths
between any pair of vertices of G. A maximal biconnected subgraph of G is a
block of G. G is a block graph if every block of G is a complete graph.

A tree is a connected graph without cycles. Any connected subgraph of a tree
is a subtree of that tree. Vertices of degree 0 or 1 in a tree are called leaves. A
subgraph G′ of a graph G is a spanning tree of G if G′ is a tree and V (G) = V (G′).

Two graphs G = (V, E) and G′ = (V ′, E′) are isomorphic if there is a bijective
mapping φ : V → V ′ such that {v, w} ∈ E(G) if and only if {φ(v), φ(w)} ∈ E(G′).

The join G1∗G2 of two vertex-disjoint graphs G1 = (V1, E1) and G2 = (V2, E2)
is defined as G1 ∗ G2 := (V1 ∪ V2, E1 ∪ E2 ∪ {{v1, v2} | v1 ∈ V1, v2 ∈ V2}). If G1

and G2 are not vertex-disjoint, then in the preceding definition they are replaced
by vertex-disjoint isomorphic copies G′

1 and G′
2. Thus, the join G1 ∗G2 is unique

up to isomorphism. Finally, for each n ∈ N we use Kn, Ln and Pn to denote the
complete graph, the edgeless graph and the path on n vertices, respectively.

2.2 Posets

Our terminology on posets is standard and agrees with that of Grätzer [Gra98].

Definition 2.2.1 Let P be a set. A partial ordering relation on P is a binary
relation which is reflexive, antisymmetric and transitive. Given such a relation,
we refer to P as a partially ordered set or poset . If there are no ambiguities we
use ≤ to denote the partial ordering relation on P and write a < b if a ≤ b and
a 6= b for any a, b ∈ P . Two elements a, b ∈ P are called comparable if a ≤ b or
b ≤ a; otherwise, they are called incomparable. A subset C of P is a chain resp.
antichain of P if any two elements of C are comparable resp. incomparable. In
the particular case where P itself is a chain the partial ordering relation on P is
called linear . The length of a chain C of P is one less than the cardinality of C.
For any p ∈ P the length of a longest chain extending upward to p is called the
height of p. The height of P is the maximum height of an element of P . P is
called lower-finite resp. upper-finite if {x ∈ P | x ≤ p} resp. {x ∈ P | x ≥ p} is
finite for any p ∈ P . A lower bound of a subset X of P is an element p ∈ P
such that p ≤ x for any x ∈ X. Dually, an upper bound of a subset X of P
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is an element p ∈ P such that p ≥ x for any x ∈ X. A lower semilattice is
a partially ordered set P such that P contains a greatest lower bound of any
non-empty finite subset X of P , which is called the infimum or meet of X and
abbreviated to inf X or

∧
X. Dually, an upper semilattice is a partially ordered

set P such that P contains a least upper bound of any non-empty finite subset
X of P , which is called the supremum or join of X and abbreviated to supX
or
∨

X. The infimum and supremum of any two elements x, y ∈ P are denoted
by x ∧ y and x ∨ y, respectively. An element p of a lower semilattice P is called
meet-irreducible if p = x ∧ y implies p = x or p = y. Dually, an element p
of an upper semilattice P is called join-irreducible if p = x ∨ y implies p = x
or p = y. A lower resp. upper subsemilattice of a lower resp. upper semilattice
P is a subset X of P which is closed under ∧ resp. ∨. The lower resp. upper
subsemilattice of P generated by a subset X of P is the intersection of all lower
resp. upper subsemilattices of P which include X as a subset. A lattice is a
partially ordered set P which is both a lower and an upper semilattice. We write
L = [0̂, 1̂] to signify that L has a least element 0̂ and greatest element 1̂. A
bijective mapping φ from a lattice L to a lattice L′ is a lattice isomorphism if
φ(x ∧ y) = φ(x) ∧ φ(y) and φ(x ∨ y) = φ(x) ∨ φ(y) for any x, y ∈ L.

Usually, a partially ordered set P is represented as a Hasse diagram in which
elements of P are represented by points in the plane and points associated with
distinct elements x and y of P are joined by a line segment ascending from x to
y if x < y and there is no p ∈ P lying strictly between x and y. Thus, relations
implied by transitivity are not explicitly shown. Figure 6.3 on page 104 shows a
Hasse diagram for a set of five elements a, b, c, d, e where d < b, e and b < a, c.



Chapter 3

Improved Inclusion-Exclusion
Identities

In this chapter we establish improvements of the classical inclusion-exclusion
identity based on closure operators (having the unique basis property) and kernel
operators. In a unified way we thus rediscover several results from the literature
such as the tree sieve of Naiman and Wynn [NW92] and the semilattice sieve of
Narushima [Nar74]. We then establish two recursive schemes for the probability
of a union, which have applications in the context of system reliability analysis.
Throughout, we use P(V ) to denote the power set of any set V , that is, the set
of all subsets of V , and P∗(V ) to denote the set of all non-empty subsets of V .

3.1 Improvements based on closure operators

In what follows it is intuitive to imagine that c is the convex hull operator in R
d .

Definition 3.1.1 Let V be a set. A closure operator on V is a mapping c from
the power set of V into itself such that for any subsets X and Y of V ,

(i) X ⊆ c(X) (extensionality),

(ii) X ⊆ Y ⇒ c(X) ⊆ c(Y ) (monotonicity),

(iii) c(c(X)) = c(X) (idempotence).

If c is a closure operator on V , then a subset X of V is referred to as c-closed
if c(X) = X and as c-free if all subsets of X are c-closed. A c-basis of X is a
minimal subset B of X such that c(B) = X. If there are no ambiguities, we also
write closed instead of c-closed, free instead of c-free, and basis instead of c-basis.

The following proposition characterizes the free sets by means of their bases.

Proposition 3.1.2 [Doh00b] Let V be a finite set, and let c be a closure operator
on V . Then, any subset J of V is free if and only if it is a basis of itself.

8



CHAPTER 3. IMPROVED INCLUSION-EXCLUSION IDENTITIES 9

Proof. Trivially, if J is free, then J is a basis of itself. Subsequently, the opposite
direction is proved by contraposition. Assume that J is not free, that is, K ⊂ J
for some non-closed set K. If J is not closed, then it is not a basis of itself, and
we are done. Thus, we may assume that J is closed. For each k ∈ c(K) \ K
we find that k ∈ c(K) = c(K \ {k}) ⊆ c(J \ {k}) ⊆ c(J) = J and hence,
J ⊆ c(J \{k}∪{k}) ⊆ c(c(J \{k})∪{k}) = c(c(J \{k})) = c(J \{k}) ⊆ c(J) = J .
Therefore, k ∈ J and c(J \ {k}) = J , whence J is not a basis of itself. 2

The following definition is due to Edelman and Jamison [EJ85].

Definition 3.1.3 A convex geometry is a pair (V, c) consisting of a finite set V
and a closure operator c on V such that c(∅) = ∅ and such that any c-closed
subset of V has a unique c-basis.

The most prominent example of a convex geometry is the following:

Example 3.1.4 [EJ85] Let V be a finite set of points in Rd , and for any subset
X = {x1, . . . , xn} of V let conv(X) denote the convex hull of X, that is,

(3.1) conv(X) :=

{
n∑

i=1

tixi

∣∣∣∣∣ t1, . . . , tn ≥ 0 and
n∑

i=1

ti = 1

}
.

Then, by c(X) := conv(X) ∩ V a closure operator on V is defined. By the
Minkowski-Krein-Milman theorem, any c-closed subset X of V has a unique c-
basis, consisting of the vertices of conv(X). Thus, (V, c) is a convex geometry.

Some further examples associated with graphs and semilattices follow.

Example 3.1.5 [EJ85] For any tree G = (V, E) and any subset X of V define

c(X) :=
⋃

x,y∈X

{z ∈ V | z is on the unique path between x and y} .

Then, a subset X of V is c-closed if and only if G[X] is a subtree of G, and
c-free if and only if X is an edge or a singleton, that is, if X = {v, w} for some
{v, w} ∈ E or X = {v} for some v ∈ V . Since the leaves of G[X] constitute a
unique c-basis for any c-closed subset X of V , (V, c) is a convex geometry.

Example 3.1.6 [EJ85] Let G = (V, E) be a connected block graph, and for any
subset X of V let c(X) be the smallest (with respect to inclusion) superset of X
that induces a connected subgraph of G. Then, a subset X of V is c-closed if and
only if G[X] is connected, and c-free if and only if X is a clique of G, that is, if
G[X] is complete. Since the simplicial vertices of G[X] constitute a unique c-basis
for any c-closed subset X of V , we conclude that (V, c) is a convex geometry.
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Example 3.1.7 [EJ85] Let V be a finite upper (resp. lower) semilattice, and for
any subset X of V let c(X) be the upper (resp. lower) subsemilattice of V which
is generated by X. Then, the c-closed subsets of V are the upper (resp. lower)
subsemilattices of V , while the c-free subsets of V are the chains of V . Since any
c-closed subset X of V has a unique c-basis, namely the set of its join-irreducibles
(resp. meet-irreducibles), we are again faced with a convex geometry (V, c).

Although not mentioned by Edelman and Jamison [EJ85], the following propo-
sition generalizes a result of Narushima [Nar74, Nar77] on semilattices.

Proposition 3.1.8 [EJ85] For any closed set J in a convex geometry (V, c),

∑
I⊆J

c(I)=J

(−1)|I| =

{
(−1)|J | if J is free,

0 otherwise.

Subsequently, we give our own proof of Proposition 3.1.8. It strongly general-
izes Narushima’s proof [Nar74, Nar77] for the semilattice case (Example 3.1.7).

Proof. Let J0 be the unique basis of J . Then, c(I) = J iff J0 ⊆ I ⊆ J . Hence,

∑
I⊆J

c(I)=J

(−1)|I| =

{
(−1)|J | if J0 = J,

0 otherwise.

From Proposition 3.1.2 it follows that J0 = J if and only if J is free. 2

The following proposition will be used later to derive the main result of this
section. It may have applications not only to inclusion-exclusion.

Proposition 3.1.9 [Doh99b] Let (V, c) be a convex geometry, and let g be a
mapping from the power set of V into an abelian group such that g = g ◦ c. Then,∑

I⊆V

(−1)|I| g(I) =
∑
J⊆V
J free

(−1)|J | g(J) .

Proof. By the requirements, g(I) = g(c(I)) for any subset I of V . Therefore,∑
I⊆V

(−1)|I| g(I) =
∑
I⊆V

(−1)|I| g(c(I)) =
∑
J⊆V

c(J)=J

∑
I⊆J

c(I)=J

(−1)|I| g(J) .

Now, by applying Proposition 3.1.8 the statement immediately follows. 2

The following corollary contains an unpublished result due to Lawrence.
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Corollary 3.1.10 [EJ85] Let (V, c) be a convex geometry where V 6= ∅. Then,∑
J⊆V
J free

(−1)|J | = 0 .

Proof. For any I ⊆ V define g(I) := 1 and apply Proposition 3.1.9. 2

Although we do not need the following two corollaries, we state them since
we feel that they are interesting in their own right.

Corollary 3.1.11 [Doh99b] In any convex geometry (V, c) there are exactly∑
I⊆V

(−1)|c(I)\I|

free sets.

Proof. For any I ⊆ V define g(I) := (−1)|c(I)| and apply Proposition 3.1.9. 2

Corollary 3.1.12 [Doh99b] Let (V, c) be a convex geometry. Then,

(3.2)
∑
I⊆V

(−1)|I| |c(I)| =
∑
J⊆V
J free

(−1)|J | |J | .

Proof. For any I ⊆ V define g(I) := |c(I)| and apply Proposition 3.1.9. 2

Remark. For the convex geometry of Example 3.1.4, where c is derived from
the convex hull operator in Rd , Corollary 3.1.12 specializes to a recent result of
Gordon [Gor97]. A more recent result of Edelman and Reiner [ER00] states that
either side of (3.2) agrees in absolute value with the number of points in V which
are in the interior of conv(V ) if |V | > 1. This settles a conjecture of Ahrens,
Gordon and McMahon [AGM99], who previously gave a proof for d = 2.

We continue with a further preliminary proposition.

Proposition 3.1.13 [Doh00b] Let {Av}v∈V be a finite family of sets and c a
closure operator on V such that for any non-empty and non-closed subset X of V ,

(3.3)
⋂
x∈X

Ax ⊆
⋃
v/∈X

Av .

Then, for any non-empty subset I of V ,⋂
i∈I

Ai =
⋂

i∈c(I)

Ai .
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Proof. Fix some I ⊆ V , I 6= ∅. There is nothing to prove if
⋂

i∈I Ai = ∅.
Otherwise choose ω ∈ ⋂i∈I Ai and show that ω ∈ ⋂i∈c(I) Ai. By the choice of ω,

I ⊆ Vω where Vω := {v ∈ V |ω ∈ Av}. By the definition of Vω and (3.3), Vω is
closed and hence, c(I) ⊆ Vω. Thus, ω ∈ ⋂i∈c(I) Ai and the proof is complete. 2

We are now ready to state the main result of this section, which is both a
generalization and improvement of the classical inclusion-exclusion identity.

Theorem 3.1.14 [Doh00b] Let (V, c) be a convex geometry and {Av}v∈V a finite
family of sets such that for any non-empty and non-closed subset X of V ,⋂

x∈X

Ax ⊆
⋃
v/∈X

Av .

Then,

χ

( ⋃
v∈V

Av

)
=

∑
J∈P∗(V )

J free

(−1)|J |−1 χ

(⋂
j∈J

Aj

)
.

Proof. By the classical inclusion-exclusion identity (1.1) we have χ
(⋃

v∈V Av

)
=∑

I⊆V (−1)|I|−1g(I) where g(I) := χ
(⋂

i∈I Ai

)
if I 6= ∅ and g(∅) := 0. By Proposi-

tion 3.1.13 and since c(∅) = ∅ we have g = g ◦ c. Now apply Proposition 3.1.9. 2

Remarks. Note that by setting c(X) := X for any subset X of V , the improved
identity of Theorem 3.1.14 specializes to the classical inclusion-exclusion identity.

The reader should also note that the requirements of Theorem 3.1.14 are
satisfied if

⋂
x∈X Ax ⊆ Av for any non-empty subset X of V and any v ∈ c(X).

We further remark that the improved identity of Theorem 3.1.14 involves
intersections of at most h(c) := max{|J | : J c-free} sets. In [JW81] it is shown
that h(c) is the Helly number of the family of all c-closed subsets of V , that is, the
smallest integer h such that any family of c-closed subsets of V whose intersection
is empty has a subfamily of h or fewer sets whose intersection is also empty.

From Theorem 3.1.14 we now deduce some results, which for the first time
appear in a common context. Among these results are the semilattice sieve of
Narushima [Nar74, Nar77] and the tree sieve of Naiman and Wynn [NW92].

Corollary 3.1.15 [Nar74, Nar77] Let {Av}v∈V be a finite family of sets, where
V is an upper semilattice such that Ax ∩Ay ⊆ Ax∨y for any x, y ∈ V . Then,

(3.4) χ

( ⋃
v∈V

Av

)
=

∑
I∈P∗(V )

I is a chain

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
.
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Proof. Apply Theorem 3.1.14 in connection with Example 3.1.7. 2

Remark. Corollary 3.1.15 reduces to the classical inclusion-exclusion identity if V
is a chain. The case where Ax∩Ay = Ax∨y for any x, y ∈ V is treated in [Doha].

The following result is due to Naiman and Wynn [NW92]:

Corollary 3.1.16 [NW92] Let {Av}v∈V be a finite family of sets, where the in-
dices form the vertices of a tree G = (V, E) such that Ax ∩ Ay ⊆ Az for any
x, y ∈ V and any z on the unique path between x and y in G. Then,

χ

( ⋃
v∈V

Av

)
=
∑
i∈V

χ(Ai) −
∑

{i,j}∈E

χ(Ai ∩Aj) .

Proof. Apply Theorem 3.1.14 in connection with Example 3.1.5. 2

Remark. The particular case where G is a path on n vertices gives rise to

χ

(
n⋃

i=1

Ai

)
=

n∑
i=1

χ(Ai)−
n∑

i=2

χ(Ai−1 ∩ Ai) ,

which is valid for all finite sequences of sets A1, . . . , An that satisfy Ai ∩Aj ⊆ Ak

for i, j = 1, . . . , n and k = i, . . . , j. This latter consequence is again due to
Naiman and Wynn [NW92] and explains the cancellations in Figure 1.1.

Since any tree is a connected chordal graph, the following corollary generalizes
the preceding one.

Corollary 3.1.17 [Doh99b] Let {Av}v∈V be a finite family of sets, and let G =
(V, E) be a connected chordal graph such that Ax∩Ay ⊆ Az for any x, y ∈ V and
any z on any chordless path between x and y in G. Then,

(3.5) χ

( ⋃
v∈V

Av

)
=

∑
I∈P∗(V )

I is a clique

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
.

Proof. We apply Theorem 3.1.14. For any subset X of V define

c(X) :=
⋃

x,y∈X

{z ∈ V | z is on a chordless path between x and y} .

Then, (V, c) is a convex geometry, where a subset X of V is free if and only if X
is a clique of G [EJ85, FJ86]. Theorem 3.1.14 now gives the result. 2

Remarks. Note that Corollary 3.1.17 specializes to the classical inclusion-exclusion
identity if G is complete, since then all subsets of the vertex-set are cliques.
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Howorka [How81] showed that in chordal graphs having the property that all
cycles of length five have at least three chords the chordless paths are precisely the
shortest paths and that chordal graphs with this property are unions of Ptolemaic
graphs and vice versa. Ptolemaic graphs are defined below. For a discussion of
this class of graphs and other restricted classes of chordal graphs in connection
with convex geometries, the reader is referred to Farber and Jamison [FJ86].

Definition 3.1.18 A graph G is called Ptolemaic if it is connected and if for
any four vertices v, w, x, y of G, d(v, w)d(x, y) ≤ d(v, x)d(w, y) + d(w, x)d(v, y)
where d(a, b) denotes the length of a shortest path between a and b in G.

By Corollary 3.1.17 and the preceding remarks, we have the following result:

Corollary 3.1.19 [Doh99b] Let {Av}v∈V be a finite family of sets, and let G =
(V, E) be a Ptolemaic graph such that Ax ∩ Ay ⊆ Az for any x, y ∈ V and any z
on any shortest path between x and y in G. Then, (3.5) holds.

We proceed with deducing some further consequences of Theorem 3.1.14.

Corollary 3.1.20 Let {Av}v∈V be a finite family of sets where for any non-empty
subset X of V there is a unique minimal non-empty subset Y of X such that

(3.6)
⋂
x∈X

Ax =
⋂
y∈Y

Ay .

Then,

χ

( ⋃
v∈V

Av

)
=
∑

I

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
,

where the sum is extended over all non-empty subsets I of V such that
⋂

i∈I Ai 6=⋂
j∈J Aj for all non-empty proper subsets and proper supersets J of I.

Proof. Again, we apply Theorem 3.1.14. It is straightforward to check that

c(X) :=

{
v ∈ V

∣∣∣∣∣
⋂
x∈X

Ax ⊆ Av

}
(X 6= ∅) ; c(∅) := ∅ ;

defines a closure operator on V . In order to verify the unique basis property of
Definition 3.1.3, let X be a non-empty closed subset of V , and let Y be the unique
minimal non-empty subset of X satisfying (3.6). Then, c(X) = c(Y ) ⊆ X and
hence, c(Y ) = X. Now, to show that Y is smallest with respect to c(Y ) = X,
suppose that c(Y ′) = X for some non-empty subset Y ′ of X. Then,

⋂
x∈X Ax =⋂

y∈Y ′ Ay and hence, Y ′ ⊇ Y by the choice of Y . Thus, Y is the unique c-basis
of X. The description of the free sets directly follows from Proposition 3.1.2. 2

The dual version of the following corollary has been published in [Doh97]
together with a generalization to Möbius inversion over power set lattices.
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Corollary 3.1.21 [Doh97] Let {Av}v∈V be a finite family of sets, where V is
endowed with a linear ordering relation, and let X be a set of non-empty subsets
of V such that for any X ∈ X,⋂

x∈X

Ax ⊆ Av for some v > max X.

Then,

χ

( ⋃
v∈V

Av

)
=

∑
I∈P∗(V )

I 6⊇X(∀X∈X)

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
.

Proof. By the requirements of the corollary there is a family {vX}X∈X ⊆ V such
that for any X ∈ X,

⋂
x∈X Ax ⊆ AvX

where vX > max X. For any I ⊆ V define

c(I) := I ∪ {vX |X ∈ X, X ⊆ I}

as well as

c∗(I) := c(I) ∪ c(c(I)) ∪ c(c(c(I))) ∪ c(c(c(c(I)))) ∪ · · · .

Then, c∗ is a closure operator on V . Since vX > max X for any X ∈ X we find
that I \{vX |X ∈ X, X ⊆ I} is the unique c∗-basis of any c∗-closed subset I of V .
Thus, (V, c∗) is a convex geometry. Evidently, a subset I of V is c∗-free if and
only if I 6⊇ X for any X ∈ X. Now apply Theorem 3.1.14 with c∗ instead of c. 2

Remark. Note that the dual version of the preceding corollary is obtained by
replacing v > max X with v < min X. The reader should also note that the
corollary reduces to the classical inclusion-exclusion principle if X is empty.

As a consequence of Corollary 3.1.21 we deduce the following generalization
of Corollary 3.1.15, which is again due to Narushima [Nar82].

Corollary 3.1.22 [Nar82] Let {Av}v∈V be a finite family of sets, where V is
endowed with a partial ordering relation such that for any x, y ∈ V , Ax∩Ay ⊆ Az

for some upper bound z of x and y. Then, (3.4) holds.

Proof. Corollary 3.1.22 follows from Corollary 3.1.21 by defining X as the set
of all unordered pairs of incomparable elements of V and then considering an
arbitrary linear extension of the partial ordering relation on V . 2

Remark. Note that the requirements of Corollary 3.1.22 are weaker than the
original requirements of Narushima [Nar82]. Namely, Narushima requires that
for any x, y ∈ V , Ax ∩ Ay ⊆ Az for some minimal upper bound z of x and y. In
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Corollary 3.1.22, however, the minimality of z is not required. From this point of
view, Corollary 3.1.22 is more general than Narushima’s original result [Nar82].

We close this section with a generalization of Proposition 3.1.8, Proposi-
tion 3.1.9 and Theorem 3.1.14 to the situation where the closure operator does
not have the unique basis property. To this end, we need the following definition:

Definition 3.1.23 Let V be a finite set and c a closure operator on V . A c-
formation of a subset X of V is any non-empty set B of c-bases of X such
that

⋃
B = X. A c-formation B of X is odd resp. even if |B| is odd resp.

even. The c-domination of X, domc(X), is the number of odd c-formations of X
minus the number of even c-formations of X. Evidently, if X is not c-closed,
then domc(X) = 0, and if X is c-free, then domc(X) = 1. If (V, c) is a convex
geometry, then domc(X) = 1 resp. 0 depending on whether X is c-free or not.

Proposition 3.1.24 [Doh99b] Let V be a finite set and c a closure operator
on V . Then, for any c-closed subset J of V ,∑

I⊆J
c(I)=J

(−1)|I| = (−1)|J | domc(J) .

Proof. Let J0, . . . , Jn be the distinct bases of J . Evidently, c(I) = J if and only
if Jk ⊆ I ⊆ J for some k ∈ {0, . . . , n}. Thus, by including and excluding terms,∑

I⊆J
c(I)=J

(−1)|I| =
∑

B⊆{J0,...,Jn}
B6=∅

(−1)|B|−1
∑

I :
S
B⊆I⊆J

(−1)|I| =
∑

B⊆{J0,...,Jn}
B6=∅,

S
B=J

(−1)|B|−1(−1)|J | .

The result now follows from the definition of the c-domination domc(J). 2

Proposition 3.1.25 [Doh99b] Let V be a finite set, c a closure operator on V
and g a mapping from P(V ) into an abelian group such that g = g ◦ c. Then,∑

I⊆V

(−1)|I| g(I) =
∑
J⊆V

J closed

(−1)|J | domc(J) g(J) .

Proof. Proposition 3.1.25 follows from Proposition 3.1.24 in the same way as
Proposition 3.1.9 follows from Proposition 3.1.8. 2

Theorem 3.1.26 [Doh99b] Let {Av}v∈V be a finite family of sets and c a closure
operator on V such that for any non-empty and non-closed subset X of V ,⋂

x∈X

Ax ⊆
⋃
v/∈X

Av
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and such that c(∅) = ∅. Then,

χ

( ⋃
v∈V

Av

)
=

∑
J∈P∗(V )
J closed

(−1)|J |−1 domc(J) χ

(⋂
j∈J

Aj

)
.

Proof. Theorem 3.1.26 follows from Proposition 3.1.13 and Proposition 3.1.25
like Theorem 3.1.14 follows from Proposition 3.1.13 and Proposition 3.1.9. 2

3.2 Improvements based on kernel operators

Similar inclusion-exclusion results as for closure operators having the unique basis
property are now established for kernel operators. There is, however, no duality
between the results of the preceding section and the results of the present section.

Definition 3.2.1 Let V be a set. A kernel operator on V is a mapping k from
the power set of V into itself such that for all subsets X and Y of V ,

(i) k(X) ⊆ X (intensionality),

(ii) X ⊆ Y ⇒ k(X) ⊆ k(Y ) (monotonicity),

(iii) k(k(X)) = k(X) (idempotence).

If k is a kernel operator on V , then a subset X of V is called k-open if k(X) = X.

There is a well-known correspondence between kernel operators on V and
union-closed subsets of the power set of V . Similarly, there is a correspondence
between closure operators and intersection-closed subsets, which shall not be of
interest to us. For a proof of the following proposition, we refer to Erné [Ern82].

Proposition 3.2.2 [Ern82] Let V be a finite set. If k is a kernel operator on V ,
then {X ⊆ V |X k-open} is union-closed. If X ⊆ P(V ) is union-closed, then

I 7→
⋃
{X ∈ X |X ⊆ I} (I ⊆ V )

defines a kernel operator k on V such that X is k-open if and only if X ∈ X.

Lemma 3.2.3 [Doh99f] Let V be a set, k a kernel operator on V and X0 a
k-open subset of V . Then, all minimal sets in {Y ⊆ V | k(Y ) ⊃ X0} are k-open.

Proof. Assume that Y is not k-open and k(Y ) ⊃ X0. Then, k(Y ) ⊂ Y and
k(k(Y )) ⊃ X0, thus showing that Y is not minimal in {Y ⊆ V | k(Y ) ⊃ X0}. 2

The following theorem will be used below to prove the main result of this
section. It has applications not only to inclusion-exclusion, but also to the Tutte
polynomial, the β invariant and the Möbius function (see Sections 6.3 and 6.4).
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Theorem 3.2.4 [Doh99f] Let V be a finite set, and let f and g be mappings from
the power set of V into an abelian group such that f(X) =

∑
Y ⊇X g(Y ) for any

subset X of V . Furthermore, let k be a kernel operator on V , and let X0 be a
k-open subset of V such that f(X) = 0 for any k-open X ⊃ X0. Then,

f(X0) =
∑

Y : k(Y )=X0

g(Y ) .

Proof. Obviously, we only have to show that
∑

Y : k(Y )⊃X0
g(Y ) = 0. Let Y0

consist of all subsets Y of V which satisfy k(Y ) ⊃ X0 and which are minimal
with respect to this property. By including and excluding terms we find that∑
Y : k(Y )⊃X0

g(Y ) =
∑

Y ⊇ Z for
some Z ∈ Y0

g(Y ) =
∑

Z⊆Y0,Z6=∅
(−1)|Z|−1

∑
Y ⊇ Z for
any Z ∈ Z

g(Y )

=
∑

Z⊆Y0,Z 6=∅
(−1)|Z|−1

∑
Y ⊇SZ

g(Y ) =
∑

Z⊆Y0,Z6=∅
(−1)|Z|−1f

(⋃
Z
)
.

By the preceding lemma, any Z ∈ Z is k-open and hence,
⋃
Z is k-open. Since

obviously
⋃
Z ⊃ X0, the requirements give f

(⋃
Z
)

= 0, whence the result. 2

The main result of this section is the following:

Theorem 3.2.5 [Doh99f] Let {Av}v∈V be a finite family of sets, and let k be a
kernel operator on V such that for any non-empty and k-open subset X of V ,⋂

x∈X

Ax ⊆
⋃
v/∈X

Av .

Then,

χ

( ⋃
v∈V

Av

)
=

∑
I∈P∗(V )
k(I)=∅

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
.

Subsequently, we give two different proofs of Theorem 3.2.5. The first proof
combines Theorem 3.2.4 with the classical inclusion-exclusion principle, whereas
the second proof generalizes Garsia and Milne’s bijective proof of the classical
inclusion-exclusion principle [GM81, Zei84, Pau86] as well as Blass and Sagan’s
bijective proof of Whitney’s broken circuit theorem on chromatic polynomi-
als [BS86, Whi32]. We come back to Whitney’s theorem in Section 6.2, p. 91.

First proof. We apply Theorem 3.2.4. For any subsets X and Y of V define

f(X) := (−1)|X| χ

( ⋂
x∈X

Ax ∩
⋂
v/∈X

{Av

)
; g(Y ) := (−1)|Y | χ

( ⋂
y∈Y

Ay

)
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where, by convention,
⋂

x∈∅ Ax =
⋂

x/∈V {Av = Ω (the ground set). By applying
the principle of inclusion-exclusion we find that f(X) =

∑
Y ⊇X g(Y ) for any

subset X of V , and by the requirements of the theorem, f(X) = 0 for any non-
empty and k-open subset X of V . Hence, by applying Theorem 3.2.4, we obtain
χ
(⋂

v∈V {Av

)
=
∑

I:k(I)=∅(−1)|I|χ
(⋂

i∈I Ai

)
, from which the statement of the

theorem follows since, due to a law of De Morgan, χ
(⋂

{Av

)
= 1−χ

(⋃
Av

)
. 2

Second proof. Evidently, it suffices to prove that

χ

( ⋃
v∈V

Av

)
+
∑

I∈P∗(V )
k(I)=∅
|I| even

χ

(⋂
i∈I

Ai

)
=

∑
I∈P∗(V )
k(I)=∅
|I| odd

χ

(⋂
i∈I

Ai

)
.(3.7)

For any ω ∈ ⋃v∈V Av define Vω := {v ∈ V |ω ∈ Av} as well as

E(ω) :=
{
I ∈ P(Vω)

∣∣ k(I) = ∅, |I| even} ,

O(ω) :=
{
I ∈ P(Vω)

∣∣ k(I) = ∅, |I| odd
}

.

Then, (3.7) is equivalent to

|E(ω)| = |O(ω)| for all ω ∈
⋃
v∈V

Av .(3.8)

Now, in order to prove (3.8), fix some ω ∈ ⋃v∈V Av. By the definition of Vω

and the requirements of the theorem we find that Vω is not k-open, whence some
v ∈ Vω \k(Vω) can be chosen. It follows that for any subset I of Vω, v /∈ k(I∪{v})
since otherwise v ∈ k(I ∪ {v}) ⊆ k(Vω ∪ {v}) = k(Vω), contradicting v /∈ k(Vω).
Since v /∈ k(I ∪ {v}) and k(I ∪ {v}) ⊆ I ∪ {v} we obtain k(I ∪ {v}) ⊆ I and
hence, k(I∪{v}) ⊆ k(I). From the latter we conclude that for any subset I of Vω,
k(I) = ∅ ⇒ k(I ∪ {v}) = ∅. Hence, I 7→ I M {v}, where M denotes symmetric
difference, is a bijective mapping from E(ω) to O(ω). Thus, (3.8) is shown. 2

Remarks. Note that by setting k(I) := ∅ for any subset I of V , Theorem 3.2.5
specializes to the classical inclusion-exclusion identity. Similarly, the following
theorems specialize to the classical identity if X is chosen to be empty.

Note that by the correspondence between kernel operators and union-closed
sets, the following theorem is equivalent to the preceding one.

Theorem 3.2.6 [Doh00e] Let {Av}v∈V be a finite family of sets, and let X be a
union-closed set of non-empty subsets of V such that for any X ∈ X,⋂

x∈X

Ax ⊆
⋃
v/∈X

Av .
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Then,

(3.9) χ

( ⋃
v∈V

Av

)
=

∑
I∈P∗(V )

I 6⊇X(∀X∈X)

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
.

Proof. The result follows by combining Proposition 3.2.2 and Theorem 3.2.5. 2

Corollary 3.2.7 [Dohc] Let {Av}v∈V be a finite family of sets, c a closure oper-
ator on V and X a set of non-empty subsets of V such that {c(X) |X ∈ X} is a
chain and such that for any X ∈ X,

(3.10)
⋂
x∈X

Ax ⊆
⋃

v/∈c(X)

Av .

Then, (3.9) holds.

Proof. Apply Theorem 3.2.6 with X′ := {⋃ I | ∅ 6= I ⊆ X} instead of X. Then, X′

is union-closed, and for any X ′ ∈ X′ the requirements of the corollary imply

X ′ =
⋃
{X |X ∈ X, X ⊆ X ′} ⊆

⋃
{c(X) |X ∈ X, X ⊆ X ′} = c(X0)

for some X0 ∈ X, X0 ⊆ X ′. It follows that X0 ⊆ X ′ ⊆ c(X0) and therefore,⋂
x∈X′

Ax ⊆
⋂

x∈X0

Ax ⊆
⋃

v/∈c(X0)

Av ⊆
⋃

v/∈X′
Av ,

whence Theorem 3.2.6 gives the result. 2

The following result generalizes Corollary 3.1.21. For an exemplary applica-
tion of this result to counting arrangements with forbidden positions on a chess-
like board, see [Doh99a]. See also [Doh00c] for some additional remarks.

Corollary 3.2.8 [Doh99a] Let {Av}v∈V be a finite family of sets, where V is
endowed with a linear ordering relation, and let X be a set of non-empty subsets
of V such that for any X ∈ X,

(3.11)
⋂
x∈X

Ax ⊆
⋃

v>max X

Av .

Then, (3.9) holds.
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Proof. Corollary 3.2.8 follows from Corollary 3.2.7 by using the closure operator
X 7→ c(X) where c(X) := {v ∈ V | v ≤ max X} if X 6= ∅, and c(∅) := ∅. 2

We close this section with two self-contained proofs of Corollary 3.2.7 and
Corollary 3.2.8, which only require the traditional inclusion-exclusion principle.

Alternative proof of Corollary 3.2.7. [Dohc] By the traditional form of the
inclusion-exclusion principle, it suffices to prove that

(3.12)
∑
I∈X

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
= 0 ,

where

(3.13) X := {I ⊆ V | I 6= ∅ and I ⊇ X for some X ∈ X} .

The proof employs the following partial ordering relation on the power set of V :

A ⊆c B :⇔ c(A) ∩B = A for any A, B ⊆ V .

Of course, ⊆c is reflexive [A ⊆ c(A) ⇒ c(A) ∩ A = A ⇒ A ⊆c A], antisymmetric
[(A ⊆c B) ∧ (B ⊆c A) ⇒ (c(A) ∩ B = A) ∧ (c(B) ∩ A = B) ⇒ A = c(A) ∩ B =
c(A) ∩ c(B) ∩ A = c(B) ∩ A = B] and transitive [(A ⊆c B) ∧ (B ⊆c C) ⇒
(c(A)∩B = A)∧(c(B)∩C = B)⇒ c(A)∩C = c(c(A)∩B)∩C ⊆ c(A)∩c(B)∩C =
c(A) ∩ B = A ⇒ A ⊆c C]. In order to utilize this partial ordering relation in
proving (3.12), we first show that for any Y1, Y2 ∈ X which are ⊆c-minimal in X,

(3.14) {I ⊆ V | I ⊇c Y1} ∩ {I ⊆ V | I ⊇c Y2} 6= ∅ ⇒ Y1 = Y2 .

To this end, let I ⊇c Y1 and I ⊇c Y2. Then, by definition of ⊆c, Y1 = I ∩ c(Y1)
(⊆ I) and Y2 = I ∩ c(Y2) (⊆ I). It follows that c(c(Y1) ∩ Y2) ∩ Y1 ⊆ c(Y1) ∩
c(Y2)∩ Y1 = Y1 ∩ c(Y2) = I ∩ c(Y1)∩ c(Y2) = c(Y1)∩Y2 = c(Y1)∩ Y2 ∩ I ∩ c(Y1) =
c(Y1)∩Y2∩Y1 ⊆ c(c(Y1)∩Y2)∩Y1 and hence, c(c(Y1)∩Y2)∩Y1 = c(Y1)∩Y2, that
is, c(Y1) ∩ Y2 ⊆c Y1. Since Y1, Y2 ∈ X, there are X1, X2 ∈ X such that Y1 ⊇ X1

and Y2 ⊇ X2. Since {c(X) |X ∈ X} is a chain, we may without loss of generality
assume that c(X1) ⊇ c(X2). Then, c(Y1)∩Y2 ⊇ c(X1)∩X2 ⊇ c(X2)∩X2 = X2 ∈ X
and hence, c(Y1) ∩ Y2 ∈ X. This in combination with c(Y1) ∩ Y2 ⊆c Y1 and the
⊆c-minimality of Y1 in X gives c(Y1) ∩ Y2 = Y1 and hence, Y1 ⊆c Y2. From this
and the ⊆c-minimality of Y2 in X we finally deduce Y1 = Y2, thus establishing
implication (3.14). Now, by virtue of (3.14), our claim (3.12) is proved if

(3.15)
∑
I⊇cY

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
= 0
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for each Y ∈ X which is ⊆c-minimal in X. By definition of ⊆c we obtain

(3.16)
∑
I⊇cY

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
.
=

∑
I⊆V \c(Y )

(−1)|I|−1 χ

( ⋂
y∈Y

Ay ∩
⋂
i∈I

Ai

)

where
.
= means equality up to sign. By inclusion-exclusion, (3.16) becomes

∑
I⊇cY

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
.
= χ


 ⋂

y∈Y

Ay ∩
⋃

i/∈c(Y )

Ai


 − χ

( ⋂
y∈Y

Ay

)
.

Now, (3.15) (and hence the theorem) is proved if

(3.17)
⋂
y∈Y

Ay ⊆
⋃

i/∈c(Y )

Ai .

Since Y ∈ X, there is some X ∈ X satisfying Y ⊇ X and hence, c(X) ∩ Y ∈ X.
In general, c(X) ∩ Y ⊆ c(c(X) ∩ Y ) ∩ Y ⊆ c(X) ∩ c(Y ) ∩ Y = c(X) ∩ Y and
therefore, c(c(X) ∩ Y ) ∩ Y = c(X) ∩ Y , or equivalently, c(X) ∩ Y ⊆c Y . By this
and the ⊆c-minimality of Y in X, c(X) ∩ Y = Y . Hence, c(Y ) = c(c(X) ∩ Y ) ⊆
c(X) ∩ c(Y ) ⊆ c(X). By (3.10) and since Y ⊇ X and c(Y ) ⊆ c(X) we obtain⋂

y∈Y

Ay ⊆
⋂
x∈X

Ax ⊆
⋃

i/∈c(X)

Ai ⊆
⋃

i/∈c(Y )

Ai ,

whence (3.17) holds. Thus, the proof is complete. 2

Alternative proof of Corollary 3.2.8. [Doh99a] Again, it suffices to prove (3.12).
The idea is to define a partition Z of X such that for any Z ∈ Z,

(3.18)
∑
I∈Z

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
= 0 .

We first give the definition of Z. Define X ′ := {v ∈ V | v > max X} for any
X ∈ X. In view of (3.9) and (3.11), we may without loss of generality assume
that X ′ is non-empty for any X ∈ X. For non-empty S, T ⊆ V define S 4 T if
max S < max T or S = T , and let 4∗ be a linear extension of 4. For I ∈ X let
XI be the first element of X in this extension which is included by I, and let 〈I〉
denote the intervall [I \X ′

I , I ∪X ′
I ]. We now define Z := {〈I〉 | I ∈ X} and show

that Z is indeed a partition of X: Of course, I ∈ 〈I〉 for any I ∈ X; moreover,
〈I〉 ⊆ X since J ⊇ XI for any J ∈ 〈I〉. Hence, X =

⋃
I∈X〈I〉. It remains to

show that I ∈ 〈J〉 if J ∈ 〈I〉. For J ∈ 〈I〉, XJ 4
∗ XI since J ⊇ XI . By this,

max XJ ≤ max XI < min X ′
I and therefore, XJ ∩ X ′

I = ∅. We conclude that
XJ = XJ \ X ′

I ⊆ J \ X ′
I ⊆ (I ∪ X ′

I) \ X ′
I ⊆ I and hence, XI 4

∗ XJ . From
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this and XJ 4
∗ XI it follows that XJ = XI and hence, X ′

J = X ′
I . Therefore,

J \X ′
J = J \X ′

I ⊆ (I ∪X ′
I) \X ′

I ⊆ I ⊆ (I \X ′
I) ∪X ′

I ⊆ J ∪X ′
I = J ∪X ′

J , from
which we conclude that I ∈ 〈J〉. Thus, it is shown that Z is a partition of X.

We finally prove that (3.18) holds for any Z ∈ Z. For Z = 〈J〉 we have

∑
I∈Z

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
= (−1)|J\X

′
J |−1

∑
I⊆X′

J

(−1)|I| χ


 ⋂

j∈J\X′
J

Aj ∩
⋂
i∈I

Ai


 .

By applying the inclusion-exclusion principle to the right-hand side we obtain

∑
I∈Z

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
= (−1)|J\X

′
J |−1 χ


 ⋂

j∈J\X′
J

Aj ∩
⋂

x∈X′
J

{Ax


 .

From J \X ′
J ⊇ XJ and (3.11) we conclude that

χ


 ⋂

j∈J\X′
J

Aj ∩
⋂

x∈X′
J

{Ax


 ≤ χ


 ⋂

x∈XJ

Ax ∩
⋂

x∈X′
J

{Ax


 = 0 .

Now, (3.18) immediately follows from the preceding two equations. 2

3.3 Recursive schemes

From Corollary 3.1.15 we now deduce two recursive schemes for the probability
of a union. Our results are formulated for upper semilattices only, although in
view of Corollary 3.1.22 an even more general formulation would be possible.

The following theorem strongly generalizes an important result of Shier [Shi88,
Shi91] on system reliability. We return to Shier’s result in Section 5.1, p. 56.

Theorem 3.3.1 Let {Av}v∈V be a finite family of sets, where V is an upper
semilattice such that Ax ∩ Ay ⊆ Ax∨y for any x, y ∈ V . Furthermore, let P be a
probability measure on a σ-field containing the events Av, v ∈ V , such that

P (Ai2 ∩ · · · ∩Aik) > 0 and P
(
Ai1

∣∣Ai2 ∩ · · · ∩ Aik

)
= P

(
Ai1

∣∣Ai2

)
for any chain i1 < · · · < ik in V where k > 1. Then,

(3.19) P

( ⋃
v∈V

Av

)
=
∑
v∈V

Λ(v) ,

where Λ is defined by the following recursive scheme:

(3.20) Λ(v) := P (Av)−
∑
w>v

Λ(w) P (Av|Aw) .
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Proof. By Corollary 3.1.15 it suffices to prove that for any v ∈ V ,

(3.21) Λ(v) =
∑

I∈P∗(V )
I is a chain

min I=v

(−1)|I|−1 P

(⋂
i∈I

Ai

)
.

We proceed by downward induction on v. If v is maximal in V , then by definition,
Λ(v) = P (Av), and the statement is proven. For any non-maximal v ∈ V the
recursive definition, the induction hypothesis and the requirements give

Λ(v) = P (Av) −
∑
w>v

∑
I∈P∗(V )

I is a chain
min I=w

(−1)|I|−1 P

(⋂
i∈I

Ai

)
P (Av|Aw)

= P (Av) −
∑
w>v

∑
I∈P∗(V )

I is a chain
min I=w

(−1)|I|−1 P

(⋂
i∈I

Ai

)
P

(
Av

∣∣∣∣∣
⋂
i∈I

Ai

)

= P (Av) +
∑
w>v

∑
I∈P∗(V )

I is a chain
min I=w

(−1)|I∪{v}|−1 P


 ⋂

i∈I∪{v}
Ai




= P (Av) +
∑

I∈P∗(V )
I is a chain

min I=v
I 6={v}

(−1)|I|−1 P

(⋂
i∈I

Ai

)
. 2

Note that the following theorem is not dual to the preceding one:

Theorem 3.3.2 [Doh99d] Let {Av}v∈V be a finite family of sets, where V is an
upper semilattice such that Ax ∩ Ay ⊆ Ax∨y for any x, y ∈ V . Furthermore, let
P be a probability measure on a σ-field containing the Av, v ∈ V , such that

P
(
Aik−1

∩ · · · ∩Ai1

)
> 0 and P

(
Aik

∣∣Aik−1
∩ · · · ∩Ai1

)
= P

(
Aik

∣∣Aik−1

)
for any chain ik > · · · > i1 in V where k > 1. Then,

(3.22) P

( ⋃
v∈V

Av

)
=
∑
v∈V

Λ(v) ,

where Λ is defined by the following recursive scheme:

(3.23) Λ(v) := P (Av)−
∑
w<v

Λ(w) P (Av|Aw) .
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Proof. Theorem 3.3.2 follows by replacing “downward” with “upward”, “min”
with “max” and “>” with “<” in the proof of Theorem 3.3.1. 2

Remark. By applying the technique of dynamic programming, the preceding
recursive schemes can be implemented in a quite efficient manner. See Algorithm I
for a dynamic programming implementation of (3.19) and (3.20). It can easily be
adapted to implement (3.22) and (3.23) by replacing line 1 respectively 6 with

1’: Find an ordering v1, . . . , vn of V such that vi < vj ⇒ i < j (i, j = 1, . . . , n)
6’: if vj < vi then

It is easily seen that Algorithm I has a space complexity of O(|V |) and a time
complexity of order |V |2 × T where T is the time needed to compute P (Av) and
P (Av|Aw). A quite different connection between the inclusion-exclusion principle
and the dynamic programming technique was established by Karp [Kar82].

Algorithm I Improved IE algorithm for computing the probability of a union

Require: Same requirements as in Theorem 3.3.1
Ensure: prob = P

(⋃
v∈V Av

)
1: Find an ordering v1, . . . , vn of V such that vi < vj ⇒ i > j (i, j = 1, . . . , n)
2: prob← 0
3: for i = 1 to n do
4: acc← 0
5: for j = 1 to i− 1 do
6: if vj > vi then
7: acc← acc + a[j] P (Avi

|Avj
)

8: end if
9: end for

10: a[i]← P (Avi
)− acc

11: prob← prob + a[i]
12: end for

Under the requirements of Theorem 3.3.1, the following theorem shows that
the partial sums of

∑
v∈V Λ(v) provide lower bounds on P

(⋃
v∈V Av

)
. Thus, if

Algorithm I is stopped at an arbitrary instant of time, prob provides a lower bound
to P

(⋃
v∈V Av

)
. This is not the case under the requirements of Theorem 3.3.2.

Theorem 3.3.3 Under the requirements of Theorem 3.3.1,

P

( ⋃
v∈V

Av

)
≥
∑
v∈V ′

Λ(v) for any V ′ ⊆ V .
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Proof. For any v ∈ V define V >v := {i ∈ V | i > v}. Then, by (3.21), we see that

Λ(v) = P (Av)−
∑

I∈P∗(V >v)
I is a chain

(−1)|I|−1 P

(
Av ∩

⋂
i∈I

Ai

)
.

By applying Corollary 3.1.15 with V >v instead of V and integrating the result
with respect to the measure P (Av ∩ · ), we obtain

Λ(v) = P (Av)− P

(
Av ∩

⋃
i>v

Ai

)
= P

(
Av

∖ ⋃
i>v

Ai

)
.

So Λ(v) is non-negative, whence the result follows from Theorem 3.3.1. 2



Chapter 4

Improved Bonferroni Inequalities

Recently, Naiman and Wynn [NW92, NW97] introduced the concept of an ab-
stract tube in order to obtain improved Bonferroni inequalities that are at least as
sharp as their classical counterparts while at the same time involving fewer terms.

In Section 4.1 of this chapter we review the concept of an abstract tube as well
as the main results and some applications of abstract tube theory due to Naiman
and Wynn [NW92, NW97]. Then, in Section 4.2 the main results of abstract tube
theory are applied in establishing improved Bonferroni inequalities associated
with the improved inclusion-exclusion identities of the preceding chapter.

In the final section we establish a new Bonferroni-Galambos type inequality
based on chordal graphs and deduce several known results from it. We refer to
Chapter 1 of Galambos [Gal78] and to the recent monograph of Galambos and
Simonelli [GS96b] for an extensive account of these generally valid inequalities.

4.1 The theory of abstract tubes

This section provides an introduction to the theory of abstract tubes. In or-
der to keep the exposition self-contained, we start with some prerequisites from
combinatorial topology as they can be found in the book of Harzheim [Har78].

Definition 4.1.1 An abstract simplicial complex is a set S of non-empty subsets
of some finite set V such that I ∈ S and ∅ 6= J ⊂ I imply J ∈ S. The elements of
S are the faces or simplices of S, whereas the elements of Vert(S) :=

⋃
I∈S I are

the vertices of S. The dimension of a face I, dim I, is one less than its cardinality.
The dimension of S, dim S, is the maximum dimension of a face in S. The Euler
characteristic γ(S) of an abstract simplicial complex S is defined by

(4.1) γ(S) := c0(S)− c1(S) + c2(S)− c3(S) + · · ·

where ck(S) denotes the number of faces of dimension k of S (k = 0, 1, 2, 3, . . . ).

27
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A geometric realization of a complex S is any topological space homeomorphic to

(4.2) Sπ :=
⋃
I∈S

{∑
i∈I

tieπi

∣∣∣∣∣ ti ≥ 0 ∀ i ∈ I and
∑
i∈I

ti = 1

}
,

where π is a bijective mapping from Vert(S) to {1, . . . , n} and where {e1, . . . , en}
is the standard basis of Rn (considered as a vector space). Recall that two
topological spaces X and Y are homeomorphic if there exists a bijective mapping
φ : X → Y such that both φ and its inverse φ−1 are continuous. Thus, a geometric
realization is unique up to homeomorphism. A topological space X is contractible
if there is a continuous mapping F : X× [0, 1]→ X such that F (x, 0) = x for any
x ∈ X and F ( · , 1) ≡ c for some constant c ∈ X. Since contractibility is known
to be a homeomorphism invariant, we may call an abstract simplicial complex
contractible if it has a contractible geometric realization.

Example 4.1.2 For any non-empty finite set V the abstract simplicial complex
P∗(V ) consisting of all non-empty subsets of V is contractible. In fact, the geo-
metric realization (4.2) of P∗(V ) is contractible by means of the mapping

F : Sπ × [0, 1]→ Sπ, (x, t) 7→ (1− t)x + teπv,

where v ∈ V can be chosen arbitrarily.

Example 4.1.3 Figure 4.1 shows a realization of the abstract simplicial complex

S = {{1}, {2}, {3}, {4}, {5}, {6}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3},
{3, 4}, {4, 5}, {4, 6}, {5, 6}} .

Obviously, this complex is not contractible because of the unshaded hole on the
right. However, if we fill-in the hole (that is, if we attach the triangle {4, 5, 6} to
the complex), then a contractible abstract simplicial complex would result.

1

2

3 4

5

6

Figure 4.1: A geometric realization of an abstract simplicial complex.

The following definition is due to Naiman and Wynn [NW97].
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Definition 4.1.4 An abstract tube is a pair (A, S) consisting of a finite family
of sets A = {Av}v∈V and an abstract simplicial complex S ⊆ P∗(V ) such that for
any ω ∈ ⋃v∈V Av the abstract simplicial complex

(4.3) S(ω) :=

{
I ∈ S

∣∣∣∣∣ω ∈
⋂
i∈I

Ai

}

is contractible. Given two abstract tubes (A1, S1) and (A2, S2), we say that
(A1, S1) is a subtube of (A2, S2) if A1 = A2 and S1 ⊆ S2.

Example 4.1.5 Let {Av}v∈V be a finite family of sets. Then, ({Av}v∈V ,P∗(V ))
is an abstract tube, where P∗(V ) again denotes the set of non-empty subsets of V .

Example 4.1.6 Consider the sets A1, A2, A3, A4, A5, whose Venn diagram is
shown in Figure 1.1. It is straightforward to check that({A1, A2, A3, A4, A5}, {{1}, {2}, {3}, {4}, {5}, {1, 2}, {2, 3}, {3, 4}, {4, 5}}

)
is an abstract tube.

Example 4.1.7 Let {Av}v∈V be a finite family of sets. Trivially,(
{Av}v∈V ,

{
I ∈ P∗(V )

∣∣∣∣∣
⋂
i∈I

Ai 6= ∅
})

is an abstract tube.

The latter example gives rise to the following definition:

Definition 4.1.8 Let A = {Av}v∈V be a finite family of sets. Then the set of
all I ∈ P∗(V ) satisfying

⋂
i∈I Ai 6= ∅ is called the nerve of A.

In view of Example 4.1.7, any finite family of sets forms an abstract tube
with its nerve. We will discover some more subtle classes of abstract tubes in the
course of this and the next section.

In the following, we restate the main results of abstract tube theory due to
Naiman and Wynn [NW97] and essentially give their original proofs. We start
with two preliminary propositions, which are of vital importance. The first propo-
sition provides a Bonferroni-type generalization of the topological fact that the
Euler characteristic of any contractible abstract simplicial complex is equal to 1.

Proposition 4.1.9 [NW97] Let S be a contractible abstract simplicial complex.
Then, for any r ∈ N ,

r−1∑
k=0

(−1)k ck(S) ≤ 1 (r even),

r−1∑
k=0

(−1)k ck(S) ≥ 1 (r odd).
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Proof. Let Ck denote the free abelian group generated by the faces of dimension
k of S, where by convention, Ck = (0) for k < 0 or k > dim S. Thus, the elements
of Ck are formal linear combinations of faces of dimension k of S with integer
coefficients. Obviously, the rank of Ck, that is, the maximum number of linearly
independent elements of infinite order in the group, coincides with the number
ck = ck(S) of faces of dimension k of S. Now, fix an arbitrary linear ordering of the
vertices of S, and for any face F of dimension k of S define ∂kF :=

∑k
i=0(−1)iFi,

where Fi is obtained from F by omitting the (i + 1)-st element of F , when the
elements of F are ordered according to the fixed linear ordering of the vertices of
S. Extending ∂k by linearity to all of Ck gives a homomorphism ∂k : Ck → Ck−1

satisfying ∂k◦∂k+1 = 0 for any k. The k-th homology group Hk of S is the quotient
of the kernel Zk of ∂k by the image Bk of ∂k+1. Let hk, zk and bk denote the
rank of Hk, Zk and Bk, respectively. (In homology theory, hk is termed the k-th

Betti number of S.) From the short exact sequences 0→ Zk
i→ Ck

∂k−→ Bk−1 → 0

(k = 0, 1, . . . ) and 0 → Bk
i→ Zk

πk−→ Hk → 0 (k = 0, 1, . . . ), where πk is the
canonical epimorphism from Zk onto Hk, we obtain zk + bk−1 = ck (k = 0, 1, . . . )
resp. bk +hk = zk (k = 0, 1, . . . ). Thus, hk = ck−bk−bk−1 (k = 0, 1, . . . ), whence

(4.4)
r−1∑
k=0

(−1)khk =
r−1∑
k=0

(−1)kck + (−1)rbr−1 ,

which generalizes the usual Euler-Poincaré formula. Since br−1 ≥ 0, (4.4) gives

r−1∑
k=0

(−1)khk ≥
r−1∑
k=0

(−1)kck (r even),

r−1∑
k=0

(−1)khk ≤
r−1∑
k=0

(−1)kck (r odd).

Since S is contractible, h0 = 1 and hk = 0 for k > 0. Hence, the result. 2

Proposition 4.1.10 [NW97] Let S and S′ be contractible abstract simplicial com-
plexes where S′ is a subcomplex of S, that is, S′ ⊆ S. Then, for any r ∈ N ,

r−1∑
k=0

(−1)k ck(S) ≤
r−1∑
k=0

(−1)k ck(S
′) (r even),

r−1∑
k=0

(−1)k ck(S) ≥
r−1∑
k=0

(−1)k ck(S
′) (r odd).

Proof. As in the preceding proof, let Ck, Hk, Zk and Bk be the groups associated
with S and ck, hk, zk, bk respectively denote their ranks. Similarly, let c′k, h

′
k, z

′
k, b

′
k
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denote the ranks of the groups C ′
k, H

′
k, Z

′
k, B

′
k associated with S′. Note that

ck = ck(S) and c′k = ck(S
′). Since S and S′ are contractible, h0 = h′

0 = 1 and hk =
h′

k = 0 for k > 0. Putting this into (4.4) and the primed version of it, we obtain

(4.5)

r−1∑
k=0

(−1)kck =

r−1∑
k=0

(−1)kc′k + (−1)r−1
(
br−1 − b′r−1

)
.

By viewing B′
r−1 as a subgroup of Br−1, we find that b′r−1 ≤ br−1, which in

combination with (4.5) implies the result. 2

Now, the main results of abstract tube theory, which are due to Naiman and
Wynn [NW97], are an immediate consequence of the preceding two propositions.

Theorem 4.1.11 [NW97] Let ({Av}v∈V , S) be an abstract tube. Then, for r ∈ N ,

χ

( ⋃
v∈V

Av

)
≥

∑
I∈S
|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
(r even),(4.6)

χ

( ⋃
v∈V

Av

)
≤

∑
I∈S
|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
(r odd).(4.7)

Proof. Choose ω ∈ ⋃v∈V Av. By the abstract tube property, S(ω) is contractible.
The theorem now follows by applying Proposition 4.1.9 with S(ω) in place of S. 2

Theorem 4.1.12 [NW97] Let ({Av}v∈V , S) and ({Av}v∈V , S′) be abstract tubes,
where ({Av}v∈V , S′) is a subtube of ({Av}v∈V , S). Then, for any r ∈ N ,

∑
I∈S′
|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
≥

∑
I∈S
|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
(r even),

∑
I∈S′
|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
≤

∑
I∈S
|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
(r odd).

Proof. Choose ω ∈ ⋃v∈V Av. From the abstract tube property it follows that
both S(ω) and S′(ω) are contractible. The theorem now follows by applying
Proposition 4.1.10 with S(ω) in place of S and with S′(ω) in place of S′. 2

Remarks. Since ({Av}v∈V ,P∗(V )) is an abstract tube for any finite collection
of sets {Av}v∈V , the classical Bonferroni inequalities are a particular case of
Theorem 4.1.11. Moreover, since any abstract tube ({Av}v∈V , S) is a subtube
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of ({Av}v∈V ,P∗(V )), Theorem 4.1.12 especially states that the bounds provided
by Theorem 4.1.11 are at least as sharp as their classical counterparts, although
less computational effort is needed to compute them. We further remark that
the inequalities in Theorem 4.1.11 become an identity if r ≥ dim S + 1. In
particular, any abstract tube ({Av}v∈V , S) gives rise to an improved inclusion-
exclusion identity for the indicator function of

⋃
v∈V Av which does not require

intersections of more than dimS+1 sets, that is, the most complicated intersection
is (dim S+ 1)-fold. Thus, in the terminology of Naiman and Wynn [NW97], any
abstract tube (A, S) gives rise to an inclusion-exclusion identity of depth dim S+1.

Due to Naiman and Wynn [NW97], Definition 4.1.4 can be weakened by
requiring contractibility of S(ω) for almost every ω with respect to some domi-
nating measure µ on the underlying space. In this case, the improved Bonferroni
inequalities (and associated inclusion-exclusion identities) of Theorem 4.1.11 and
Theorem 4.1.12 hold almost everywhere with respect to µ. We are thus led to

Definition 4.1.13 Let (Ω,E, µ) be a measure space. Then a pair (A, S) con-
sisting of a finite collection of sets A = {Av}v∈V ⊆ E and an abstract simplicial
complex S ⊆ P∗(V ) is called a weak abstract tube with respect to µ if S(ω), as
defined in (4.3), is contractible for almost every ω ∈ ⋃v∈V Av with respect to µ.

Remark. If (Ω,E, P ) is a probability space and (A, S) is a weak abstract tube with
respect to P , then the mapping ω 7→ S(ω) may be considered as a random abstract
simplicial complex Sran which is required to be P -almost surely contractible.

By the following result, which is stated here for completeness, the improved
Bonferroni inequalities of Theorem 4.1.11 give rise to importance sampling schemes
for determining the probability content of a union of finitely many events:

Theorem 4.1.14 [NW97] Let (Ω,E, P ) be a probability space, ({Av}v∈V , S) an
abstract tube with {Av}v∈V ⊆ E, and r ∈ N . Define fr : Ω→ R+ , hr : Ω→ R by

fr :=
1

Qr

∑
I∈S

|I|=r+1

χ

(⋂
i∈I

Ai

)
, where Qr :=

∑
I∈S

|I|=r+1

P

(⋂
i∈I

Ai

)
,

hr := χ

( ⋃
v∈V

Av

)
−
∑
I∈S
|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
,

and let Y1, Y2, . . . be independent copies of an frdP -distributed variable Y . Then,

∑
I∈S
|I|≤r

(−1)|I|−1 P

(⋂
i∈I

Ai

)
+

1

k

k∑
i=1

hr(Yi)

fr(Yi)

is an unbiased estimator for P
(⋃

v∈V Av

)
.
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Proof. By applying Theorem 4.1.11 first for r and then for r + 1 we obtain

0 ≤ (−1)r


χ

( ⋃
v∈V

Av

)
−
∑
I∈S
|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

) ≤ ∑
I∈S

|I|=r+1

χ

(⋂
i∈I

Ai

)
.

Since this is equivalent to 0 ≤ (−1)rhr ≤ frQr, we find that∫
hr dP =

∫
fr>0

hr dP =

∫
fr>0

hr

fr

fr dP = Efr

[
hr(Y )

fr(Y )

]
,

which completes the proof. 2

We close this section with some appealing geometric applications of abstract
tube theory as they appear in Naiman and Wynn [NW92, NW97]. Related results
were obtained by Edelsbrunner [Ede95] and Edelsbrunner and Ramos [ER97].

The original motivation of Naiman and Wynn [NW92, NW97] that led to the
theory of abstract tubes was the problem of computing or bounding the volume
or probability content of certain geometric objects such as polyhedra and unions
of finitely many Euclidean balls or spherical caps, which has applications to the
statistical theory of multiple comparisons [NW92] and to computational biology
where protein molecules are modeled as unions of balls in R

3 [Ede95].

Definition 4.1.15 A polyhedron in R
d is a set P =

⋂
v∈V {Hv where {Hv}v∈V is

a finite family of open half-spaces in Rd and {Hv denotes the complement of Hv

in Rd . P is d-dimensional if it contains d + 1 affinely independent points.

Note that due to a law of De Morgan, χ(P ) = 1 − χ
(⋃

v∈V Hv

)
. Thus, by

Theorem 4.1.11, the following result of Naiman and Wynn [NW97] gives rise to
improved inclusion-exclusion identities and Bonferroni inequalities for the indica-
tor function (and hence for the volume or probability content) of a d-dimensional
polyhedron in Rd . For any H ⊆ R

d we use ∂H to denote the topological boundary
of H , that is, the difference between its topological closure and interior.

Theorem 4.1.16 [NW97] Let P =
⋂

v∈V {Hv be a d-dimensional polyhedron in
Rd . Then,

({Hv}v∈V , {I∈P∗(V )|⋂i∈I(P ∩ ∂Hi) 6= ∅}
)

is an abstract tube.

Proof. (Sketch) Let S :=
{
I ∈ P∗(V )

∣∣ ⋂
i∈I(P ∩∂Hi) 6= ∅

}
and ω ∈ ⋃v∈V Hv. By

Definition 4.1.4 we have to prove that S(ω), with Hi instead of Ai, is contractible.
Observe that S(ω) is the nerve of C(ω) := {P∩∂Hi |ω ∈ Hi}, whence by a classical
theorem of Borsuk [Bor48] the contractibility of S(ω) follows from that of

⋃ C(ω).
To prove contractibility of

⋃ C(ω), we show that some homeomorphic image of⋃ C(ω) is contractible: Let π be the homeomorphism mapping each ν ∈ ⋃ C(ω)
to the intersection of the line segment νω with some hyperplane K separating ω
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from P . Then, the image of
⋃ C(ω) under π is convex and hence contractible. 2

Remark. Note that if P is in general position, that is, if no d + 1 facets P ∩ ∂Hi

share a common point, then the abstract simplicial complex in the abstract tube
of Theorem 4.1.16 is at most (d − 1)-dimensional. In this case, the improved
inclusion-exclusion identity associated with the abstract tube of Theorem 4.1.16
involves intersections of up to d half-spaces only and thus contains at most(|V |

1

)
+

(|V |
2

)
+ · · ·+

(|V |
d

)
= O

(|V |d)
terms, whereas the classical inclusion-exclusion identity still contains 2|V | − 1
terms and involves intersections of up to |V | half-spaces. If P is not in general
position, then due to Naiman and Wynn [NW97] it can be perturbed slightly
to give a polyhedron P̃ =

⋂
v∈V {H̃v, which is in general position and which

gives rise to a weak abstract tube
({Hv}v∈V , {I ∈ P∗(V )|⋂i∈I(P̃ ∩ ∂H̃i) 6= ∅}

)
(involving the original half-spaces Hv) with respect to Lebesgue measure.

Example 4.1.17 Consider the two-dimensional polyhedron P = {H1 ∩ {H2 ∩
{H3 ∩ {H4 ∩ {H5 which is displayed in Figure 4.2. By combining Theorem 4.1.16
with Theorem 4.1.11 we obtain the improved inclusion-exclusion identity

χ(P ) = 1− χ(H1)− χ(H2)− χ(H3)− χ(H4)− χ(H5)

+ χ(H1 ∩H2) + χ(H2 ∩H3) + χ(H3 ∩H4) + χ(H4 ∩H5) ,

which contains ten terms and intersection of up to two sets only. In contrast,
the traditional inclusion-exclusion formula for the indicator function of the same
polyhedron contains 25 = 32 terms and intersection of up to five sets.

We continue with a further definition.

Definition 4.1.18 Let d ∈ N . For any x ∈ Rd and r > 0 let Bd(x, r) denote the
open ball in Rd with center x and radius r, that is, Bd(x, r) := {y ∈ Rd | δ(x, y) <
r} where δ(·, ·) denotes Euclidean distance. With any finite set V ⊆ R

d we
associate the Voronoi subdivision of Rd into non-empty closed convex polyhedra

(4.8) Dv := {x ∈ Rd | δ(x, v) = min
u∈V

δ(x, u)} (v ∈ V )

consisting of points closest in Euclidean distance to v, and the Delauney complex

(4.9) D(V ) :=

{
I ∈ P∗(V )

∣∣∣∣ ⋂
i∈I

Di 6= ∅
}

.
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H3

2H

H5

1H

H
4 P

Figure 4.2: A two-dimensional polyhedron.

The following results are implicit in [NW92] and explicit in [NW97].

Theorem 4.1.19 [NW92, NW97] Let V be a finite set of points in R
d and r > 0.

Then, ({Bd(v, r)}v∈V ,D(V )) is an abstract tube.

Proof. (Sketch) Let S := D(V ) and ω ∈ ⋃v∈V Bd(v, r). By Definition 4.1.4
we have to show that S(ω), with Bd(i, r) in place of Ai, is contractible. We first
observe that S(ω) is the nerve of C(ω) := {Di |ω ∈ Bd(i, r)}, whence similar to the
proof of Theorem 4.1.16 the contractibility of S(ω) follows from that of

⋃ C(ω).
Indeed,

⋃ C(ω) is contractible since it is star-shaped with respect to ω. 2

Remark. If the centers of the balls are in general position, that is, if no d + 1
centers of the balls lie in a (d − 1)-dimensional affine subspace of Rd and no
x ∈ Rd is equidistant from more than d + 1 of the centers of the balls, then the
intersection of more than d + 1 of the sets Dv is empty and hence the dimension
of D(V ) is at most d, regardless of the radius r. In this case, the improved
inclusion-exclusion identity associated with the abstract tube of Theorem 4.1.19
involves intersections of up to d + 1 balls and therefore contains at most(|V |

1

)
+

(|V |
2

)
+ · · ·+

( |V |
d + 1

)
= O

(|V |d+1
)
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terms, whereas the classical inclusion-exclusion identity still contains 2|V | − 1
terms and involves intersections of up to |V | balls. As noted in [NW92, NW97],
the result can be generalized so that the balls may have different radii.

Figure 4.3: Twenty disks of equal radius.

Example 4.1.20 Consider the disks in Figure 4.3. Clearly, the classical inclusion-
exclusion identity for the indicator function of their union contains 220 − 1 =
1048575 terms and involves intersections of up to twenty disks. In order to apply
Theorem 4.1.19 we first form the Voronoi subdivision according to (4.8) and then
the Delauney complex according to (4.9), see Figure 4.4. The resulting Delauney
complex contains 20 vertices, 47 edges and 28 triangles. Hence, the improved
inclusion-exclusion identity associated with the abstract tube of Theorem 4.1.19
contains only 20 + 47 + 28 = 95 terms and intersections of up to three disks.

The next example explains the word tube in Definition 4.1.4.

Example 4.1.21 Figure 4.5 shows ten disks in R
2 of equal radius with equidis-

tant centers on a straight line. By Theorem 4.1.19, these ten disks together with
the path comprising the centers of the disks constitute an abstract tube.

The preceding theorem has an analogue for the spherical case.

Definition 4.1.22 For any x ∈ Sd, where Sd denotes the unit d-sphere in Rd+1 ,
and any r > 0 we use B∗

d(x, r) to denote the spherical cap in Sd with center
x and radius r ∈ (0, π/2), that is, B∗

d(x, r) := {y ∈ Sd | δ∗(x, y) ≤ r} where
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Figure 4.4: Voronoi subdivision and Delauney complex.

Figure 4.5: Ten disks of equal radius with centers on a straight line.

δ∗(x, y) := cos−1〈x, y〉 is the angular distance between x and y. With any finite
subset V of Sd we associate the spherical Voronoi subdivision of Sd into regions

D∗
v := {x ∈ Sd | δ∗(x, v) = min

u∈V
δ∗(x, u)} (v ∈ V )

and the spherical Delauney complex

D∗(V ) :=

{
I ∈ P∗(V )

∣∣∣∣ ⋂
i∈I

D∗
i 6= ∅

}
.

The spherical analogue of Theorem 4.1.19 follows.

Theorem 4.1.23 [NW92, NW97] Let V be a finite set of points in Sd and r ∈
(0, π/2). If

⋂
v∈V B∗

d(v, r) = ∅, then ({B∗
d(v, r)}v∈V ,D∗(V )) is an abstract tube.
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Proof. (Sketch) Let S := D∗(V ) and ω ∈ ⋃v∈V B∗
d(v, r). We have to show that

S(ω), with B∗
d(i, r) in place of Ai, is contractible. Similar to the preceding proof,

S(ω) is the nerve of C∗(ω) := {D∗
i |ω ∈ B∗

d(i, r)}, whence the contractibility
of S(ω) follows from that of

⋃ C∗(ω). In fact, it can be shown that
⋃ C∗(ω)

contains every geodesic arc between any of its points and ω, whence it is con-
tractible or equal to the sphere. The second alternative does not apply, since by
the requirements of the theorem the intersection of the spherical caps is empty. 2

Remark. Similar remarks as for the Euclidean case apply to the spherical case.
In particular, if the centers of the spherical caps are in general position, that is,
if no d + 1 centers lie in a d-dimensional subspace and no x ∈ Sd is equidistant
from more than d + 1 of the centers, then the dimension of D∗(V ) is at most d.

4.2 Abstract tubes via closures and kernels

In this section, the results of Section 3.1, Section 3.2 and Section 6.1 are restated
and generalized in terms of abstract tubes. Recall from Section 4.1 that any
abstract tube gives rise to improved Bonferroni inequalities. We do not mention
these inequalities explicitly, since they can easily be read from Theorem 4.1.11.

Our first result is an abstract tube generalization of Theorem 3.1.14.

Theorem 4.2.1 [Doh99b] Let (V, c) be a convex geometry, and let {Av}v∈V be a
finite family of sets such that for any non-empty and non-closed subset X of V ,⋂

x∈X

Ax ⊆
⋃
v/∈X

Av .

Then,
({Av}v∈V , {I ∈ P∗(V ) | I c-free}) is an abstract tube.

The proof of Theorem 4.2.1 is based on the following statement in Björner
and Ziegler [BZ92, Exercise 8.23c]. For a rigorous proof of this statement the
reader is referred to the very recent paper of Edelman and Reiner [ER00].

Proposition 4.2.2 [BZ92] Let (V, c) be a convex geometry. Then the abstract
simplicial complex consisting of all non-empty c-free subsets of V is contractible.

Proof of Theorem 4.2.1. Let ω ∈ ⋃v∈V Av, Vω := {v ∈ V |ω ∈ Av} and
cω(I) := c(I) for any I ⊆ Vω. By the definition of Vω and the requirements of the
theorem, Vω is c-closed. Thus, (Vω, cω) is a convex geometry. Since moreover

{I ∈ P∗(V ) | I c-free}(ω) = {I ∈ P∗(Vω) | I cω-free} ,

the contractibility of {I ∈ P∗(V ) | I c-free}(ω) follows from Proposition 4.2.2. 2
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Remarks. In view of the remarks in Section 4.1, it is equally easy to prove that({Av}v∈V , {I ∈ P∗(V ) | I c-free}) is a weak abstract tube with respect to any
probability measure P on the σ-field generated by {Av}v∈V such that

(4.10) P

( ⋂
x∈X

Ax

)
> 0 and P

( ⋃
v/∈X

Av

∣∣∣∣∣
⋂
x∈X

Ax

)
= 1

for any non-empty and non-closed subset X of V .
We further remark that

({Av}v∈V , {I ∈ P∗(V ) | I c′-free}) is a subtube of({Av}v∈V , {I ∈ P∗(V ) | I c-free}) if both c and c′ satisfy the requirements of
Theorem 4.2.1 and c′ ≤ c, where the partial ordering relation ≤ is given by

c′ ≤ c :⇔ c(I) ⊆ c′(I) for any subset I of V

or equivalently,

c′ ≤ c :⇔ all c′-closed subsets of V are c-closed.

By this and Theorem 4.1.12, it follows that the improved Bonferroni inequalities
associated with c′ are at least as sharp as those associated with c if c′ ≤ c. In
particular, since the closure operator I 7→ I on V is largest with respect to ≤,
the new inequalities are at least as sharp as their classical counterparts.

As a consequence of Theorem 4.2.1 and as an extension of Corollary 3.1.17
and Corollary 3.1.19 we now deduce two results on the clique complex:

Definition 4.2.3 The clique complex of a graph G is the abstract simplicial
complex of all non-empty cliques of G.

Corollary 4.2.4 [Doh99b] Let {Av}v∈V be a finite family of sets, where the
indices form the vertices of a connected chordal graph G = (V, E) such that
Ax ∩ Ay ⊆ Az for any x, y ∈ V and any z on any chordless path between x and
y. Then, {Av}v∈V and the clique complex of G constitute an abstract tube.

Proof. Corollary 4.2.4 follows from Theorem 4.2.1 in the same way as Corol-
lary 3.1.17 follows from Theorem 3.1.14. 2

Corollary 4.2.5 Let {Av}v∈V be a finite family of sets, where the indices form
the vertices of a Ptolemaic graph G = (V, E) such that Ax ∩ Ay ⊆ Az for any
x, y ∈ V and any z on any shortest path between x and y in G. Then, {Av}v∈V

and the clique complex of G constitute an abstract tube.

Proof. Corollary 4.2.5 follows from Corollary 4.2.4 and Howorka’s result [How81]
that in Ptolemaic graphs the chordless paths are precisely the shortest paths. 2

The following result is an abstract tube generalization of Theorem 3.2.5:
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Theorem 4.2.6 [Doh00a] Let {Av}v∈V be a finite family of sets, and let k be a
kernel operator on V such that for any non-empty and k-open subset X of V ,⋂

x∈X

Ax ⊆
⋃
v/∈X

Av .

Then,
({Av}v∈V , {I ∈ P∗(V ) | k(I) = ∅}) is an abstract tube.

The proof of Theorem 4.2.6 is based on the following proposition:

Proposition 4.2.7 Let V be a finite set, and let k be a kernel operator on V .
Then, the complex {I ∈ P∗(V ) | k(I) = ∅} is contractible or V is k-open.

Proof. Assume that V is not k-open, and let v ∈ V \ k(V ). Then, for any I ⊆ V ,
v /∈ k (I ∪ {v}), and hence the implication k(I) = ∅ ⇒ k (I ∪ {v}) = ∅ holds for
any I ⊆ V . From this we conclude that v is contained in every maximal face of
S := {I ∈ P∗(V ) | k(I) = ∅}, whence S is a cone and hence contractible. (Recall
from topology that a cone is an abstract simplicial complex S having a vertex v
which is contained in every maximal face of S. The geometric realization (4.2) of
each such complex is contractible by means of (x, t) 7→ (1− t)x + teπv.) 2

Proof of Theorem 4.2.6. To obtain a contradiction, assume there is some ω ∈⋃
v∈V Av such that {I ∈ P∗(V ) | k(I) = ∅}(ω) is not contractible. From

{I ∈ P∗(V ) | k(I) = ∅}(ω) = {I ∈ P∗(Vω) | k(I) = ∅} ,

where Vω := {v ∈ V |ω ∈ Av}, the assumption and Proposition 4.2.7 we conclude
that Vω is k-open. On the contrary, the definition of Vω and the requirements of
the theorem entrain that Vω is not k-open. Thus, Theorem 4.2.6 is proved. 2

Remarks. The remarks concerning Theorem 4.2.1 apply in a similar way to
Theorem 4.2.6. If P is a probability measure on the σ-field generated by the
family {Av}v∈V such that (4.10) holds for any non-empty and k-open subset X
of V , then

({Av}v∈V , {I ∈ P∗(V ) | k(I) = ∅}) is a weak abstract tube.
In general,

({Av}v∈V , {I ∈ P∗(V ) | k′(I) = ∅}) is a subtube of
({Av}v∈V , {I ∈

P∗(V ) | k(I) = ∅}) if k and k′ are as required in Theorem 4.2.6 and k′ ≤ k, where

k′ ≤ k :⇔ k(I) ⊆ k′(I) for any subset I of V(4.11)

or equivalently,

k′ ≤ k :⇔ all k-open subsets of V are k′-open.(4.12)

By this and Theorem 4.1.12, it follows that the improved Bonferroni inequalities
associated with k′ are at least as sharp as those associated with k if k′ ≤ k. In
particular, since the kernel operator I 7→ ∅ on V is largest with respect to ≤, the
improved inequalities are at least as sharp as their classical counterparts.
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Definition 4.2.8 With any finite set V and any system X of non-empty subsets
of V we associate the abstract simplicial complex

I(V,X) := {I ∈ P∗(V ) | I 6⊇ X for any X ∈ X} ,

consisting of all non-empty subsets of V not including any X ∈ X as a subset.

The correspondence between kernel operators and union-closed sets discussed
in Section 3.2 leads to the following equivalent formulation of Theorem 4.2.6.

Theorem 4.2.9 [Doh00a] Let {Av}v∈V a finite family of sets, and let X be a
union-closed set of non-empty subsets of V such that for any X ∈ X,⋂

x∈X

Ax ⊆
⋃
v/∈X

Av .

Then, ({Av}v∈V , I(V,X)) is an abstract tube.

Proof. The result follows by combining Proposition 3.2.2 and Theorem 4.2.6. 2

Corollary 4.2.10 [Doh00a] Let {Av}v∈V be a finite family of sets, c a closure
operator on V and X a set of non-empty subsets of V such that {c(X) |X ∈ X}
is a chain and such that for any X ∈ X,⋂

x∈X

Ax ⊆
⋃

v/∈c(X)

Av .

Then, ({Av}v∈V , I(V,X)) is an abstract tube.

Proof. Corollary 4.2.10 is deduced from Theorem 4.2.9 in the same way as Corol-
lary 3.2.7 is deduced from Theorem 3.2.6. 2

Corollary 4.2.11 [Doh99d] Let {Av}v∈V be a finite family of sets, where V is
endowed with a linear ordering relation, and let X be a set of non-empty subsets
of V such that for any X ∈ X,⋂

x∈X

Ax ⊆
⋃

v>max X

Av .

Then, ({Av}v∈V , I(V,X)) is an abstract tube.

Proof. Corollary 4.2.11 follows from Corollary 4.2.10 in the same way as Corol-
lary 3.2.8 follows from Corollary 3.2.7. 2

The following definition essentially goes back to Alexandroff [Ale37].
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Definition 4.2.12 The order complex of a finite partially ordered set V , C(V )
for short, is the abstract simplicial complex of all non-empty chains of V .

Corollary 4.2.13 [Doh99d] Let {Av}v∈V be a finite family of sets, where V is
endowed with a partial ordering relation such that for any x, y ∈ V , Ax∩Ay ⊆ Az

for some upper bound z of x and y. Then, ({Av}v∈V ,C(V )) is an abstract tube.

Proof. Corollary 4.2.13 follows from Corollary 4.2.11 in the same way as Corol-
lary 3.1.22 follows from Corollary 3.1.21. 2

Remark. Note that the requirements of Corollary 4.2.13 are already satisfied if V
is an upper semilattice such that Ax ∩ Ay ⊆ Ax∨y for any x, y ∈ V . In this way,
a specialization of Corollary 4.2.13 is obtained, which can also be deduced from
Theorem 4.2.1 in connection with the convex geometry of Example 3.1.7.

We close this section with an elementary proof of the improved Bonferroni
inequalities associated with the abstract tube of Theorem 4.2.6 and with an el-
ementary proof of the fact that these inequalities are at least as sharp as their
classical counterparts. The proofs are obtained by suitably adapting the second
proof of Theorem 3.2.5. The proof of the following theorem is new even in the
traditional case where k(I) = ∅ for any subset I of V . In this case, it generalizes
Garsia and Milne’s bijective proof of the classical inclusion-exclusion principle
[GM81, Zei84, Pau86] to an “injective proof” of the traditional Bonferroni in-
equalities. For an alternative proof via Euler characteristics we refer to [Doh00a].

Theorem 4.2.14 [Doh00a] Let {Av}v∈V be a finite family of sets, and let k be
a kernel operator on V such that for any non-empty and k-open subset X of V ,⋂

x∈X

Ax ⊆
⋃
v/∈X

Av .

Then, for any r ∈ N ,

χ

( ⋃
v∈V

Av

)
≥

∑
I∈P∗(V )
k(I)=∅
|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
(r even),

χ

( ⋃
v∈V

Av

)
≤

∑
I∈P∗(V )
k(I)=∅
|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
(r odd).
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Proof. It suffices to prove that

χ

( ⋃
v∈V

Av

)
+

∑
I∈P∗(V )
k(I)=∅
|I|≤r

|I| even

χ

(⋂
i∈I

Ai

)
≥

∑
I∈P∗(V )
k(I)=∅
|I|≤r
|I| odd

χ

(⋂
i∈I

Ai

)
(r even),(4.13)

χ

( ⋃
v∈V

Av

)
+

∑
I∈P∗(V )
k(I)=∅
|I|≤r

|I| even

χ

(⋂
i∈I

Ai

)
≤

∑
I∈P∗(V )
k(I)=∅
|I|≤r
|I| odd

χ

(⋂
i∈I

Ai

)
(r odd).(4.14)

For any ω ∈ ⋃v∈V Av and any r ∈ N define

Er(ω) :=
{
I ∈ P(Vω)

∣∣ k(I) = ∅, |I| ≤ r, |I| even} ,

Or(ω) :=
{
I ∈ P(Vω)

∣∣ k(I) = ∅, |I| ≤ r, |I| odd
}

,

where Vω := {v ∈ V |ω ∈ Av}. Obviously, (4.13) and (4.14) are equivalent to

|Er(ω)| ≥ |Or(ω)| for all ω ∈
⋃
v∈V

Av (r even),(4.15)

|Er(ω)| ≤ |Or(ω)| for all ω ∈
⋃
v∈V

Av (r odd).(4.16)

To prove (4.15) and (4.16), fix ω ∈ ⋃v∈V Av. The definition of Vω and the require-
ments of the theorem imply that Vω is not k-open. Thus, some v ∈ Vω \ k(Vω)
can be chosen. Similar arguments as in the second proof of Theorem 3.2.5 reveal
that I 7→ I M {v}, where M denotes symmetric difference, is an injective mapping
from Or(ω) into Er(ω) if r is even and from Er(ω) into Or(ω) if r is odd. 2

Theorem 4.2.15 Let {Av}v∈V be a finite family of sets, and let k and k′ be
kernel operators on V such that k′ ≤ k with respect to (4.11) or (4.12) and such
that for any non-empty and k′-open subset X of V ,⋂

x∈X

Ax ⊆
⋃
v/∈X

Av .

Then, for any r ∈ N ,

∑
I∈P∗(V )

k′(I)=∅
|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
≥

∑
I∈P∗(V )
k(I)=∅
|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
(r even),

∑
I∈P∗(V )

k′(I)=∅
|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
≤

∑
I∈P∗(V )
k(I)=∅
|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
(r odd).
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Proof. It suffices to prove that

∑
I∈P∗(V )
k′(I)=∅
|I|≤r
|I| odd

χ

(⋂
i∈I

Ai

)
+
∑

I∈P∗(V )
k(I)=∅
|I|≤r

|I| even

χ

(⋂
i∈I

Ai

)
≥

∑
I∈P∗(V )
k(I)=∅
|I|≤r
|I| odd

χ

(⋂
i∈I

Ai

)
+
∑

I∈P∗(V )
k′(I)=∅
|I|≤r

|I| even

χ

(⋂
i∈I

Ai

)
,

if r is even, and

∑
I∈P∗(V )
k′(I)=∅
|I|≤r
|I| odd

χ

(⋂
i∈I

Ai

)
+
∑

I∈P∗(V )
k(I)=∅
|I|≤r

|I| even

χ

(⋂
i∈I

Ai

)
≤

∑
I∈P∗(V )
k(I)=∅
|I|≤r
|I| odd

χ

(⋂
i∈I

Ai

)
+
∑

I∈P∗(V )
k′(I)=∅
|I|≤r

|I| even

χ

(⋂
i∈I

Ai

)
,

if r is odd. Since k′ ≤ k these inequalities are equivalent to

∑
I∈P∗(V )
k(I)=∅
k′(I) 6=∅
|I|≤r

|I| even

χ

(⋂
i∈I

Ai

)
≥

∑
I∈P∗(V )
k(I)=∅
k′(I) 6=∅
|I|≤r
|I| odd

χ

(⋂
i∈I

Ai

)
(r even),(4.17)

∑
I∈P∗(V )
k(I)=∅
k′(I) 6=∅
|I|≤r

|I| even

χ

(⋂
i∈I

Ai

)
≤

∑
I∈P∗(V )
k(I)=∅
k′(I) 6=∅
|I|≤r
|I| odd

χ

(⋂
i∈I

Ai

)
(r odd).(4.18)

For any ω ∈ ⋃v∈V Av and any r ∈ N define

E∗
r(ω) :=

{
I ∈ P∗(Vω)

∣∣ k(I) = ∅, k′(I) 6= ∅, |I| ≤ r, |I| even} ,

O∗
r(ω) :=

{
I ∈ P∗(Vω)

∣∣ k(I) = ∅, k′(I) 6= ∅, |I| ≤ r, |I| odd
}

,

where Vω := {v ∈ V |ω ∈ Av}. Evidently, (4.17) and (4.18) are equivalent to

|E∗
r(ω)| ≥ |O∗

r(ω)| for all ω ∈
⋃
v∈V

Av (r even),(4.19)

|E∗
r(ω)| ≤ |O∗

r(ω)| for all ω ∈
⋃
v∈V

Av (r odd).(4.20)

In order to establish (4.19) and (4.20), fix some ω ∈ ⋃v∈V Av and choose some
arbitrary v ∈ Vω \ k′(Vω). Since k′ ≤ k it follows that v ∈ Vω \ k(Vω). By similar
arguments as in the second proof of Theorem 3.2.5 it follows that for any subset
I of Vω, k(I) = ∅ ⇒ k(I ∪{v}) = ∅ as well as k′(I) 6= ∅ ⇒ k′(I \{v}) 6= ∅. Hence,
I 7→ I M {v}, where M denotes symmetric difference, is an injective mapping
from O∗

r(ω) into E∗
r(ω) if r is even and from E∗

r(ω) into O∗
r(ω) if r is odd. 2
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4.3 The chordal graph sieve

The improved Bonferroni inequalities of the preceding sections are only valid if
the collection of sets satisfies some structural restrictions. In this section, we
turn our attention to inequalities that are generally valid, meaning that they are
valid for any finite collection of sets. We already encountered such inequalities
in our first chapter, where we referred to them as inequalities of Bonferroni-
Galambos type. Here, we study generally valid inequalities where the selection
of intersections in the estimates is determined by a graph. In the literature,
such inequalities are known as graph sieves [GS96a, GS96b]. The first graph
sieves were obtained by Rényi [Rén61] and Galambos [Gal66, Gal72], followed
by Hunter [Hun76], Worsley [Wor82], Galambos and Simonelli [GS96a, GS96b],
McKee [McK97, McK98] and Bukszár and Prékopa [BP99]. Several classes of
graphs like trees, stars and joins of an edge and an edgeless graph are known to
give rise to graph sieves. The hypertree sieve of Tomescu [Tom86] and related
results by Grable [Gra93, Gra94] and Bukszár [Buk99] fall into the more general
category of hypergraph sieves, which are not considered here. It is well-known
and easy to see that the aforementioned classes of graphs are subclasses of the
more comprehensive class of chordal graphs. The following theorem states that
any chordal graph gives rise to a graph sieve, where the selection of intersections
in the associated inequality corresponds to the non-empty cliques of the graph.

Theorem 4.3.1 Let {Av}v∈V be a finite family of sets, where the indices form
the vertices of a chordal graph G = (V, E). Then, for any odd r ∈ N ,

χ

( ⋃
v∈V

Av

)
≤

∑
I∈P∗(V )

I clique of G
|I|≤r

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
.(4.21)

In particular,

χ

( ⋃
v∈V

Av

)
≤

∑
I∈P∗(V )

I clique of G

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
.(4.22)

Proof. Let ω ∈ ⋃v∈V Av and Vω := {v ∈ V |ω ∈ Av}. We have to show that

(4.23) 1 ≤
∑
H

∑
I clique of H

0<|I|≤r

(−1)|I|−1

where H runs over all connected components of G[Vω]. Since each such H is
connected and chordal, we can define a convex geometry (VH , cH) as in the proof
of Corollary 3.1.17, where VH is the vertex-set of H and where for any X ⊆ VH ,

cH(X) :=
⋃

x,y∈X

{z ∈ VH | z is on a chordless path between x and y in H} .
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Then, a subset I of VH is cH -free if and only if I is a clique of H . Hence, by
Proposition 4.2.2, the abstract simplicial complex SH consisting of all non-empty
cliques of H is contractible. This in combination with Proposition 4.1.9 shows
that the inner sum in (4.23) is at least one, whence (4.23) holds and the proof of
(4.21) is complete. For the proof of (4.22) choose some odd r ≥ |V |. 2

As shown subsequently, the second part of the preceding theorem can be
proved in an elementary way by employing the fact that the Euler characteristic
of the complex of all non-empty cliques of a connected chordal graph equals 1.

Alternative proof of (4.22). Let ω ∈ ⋃v∈V Av. Obviously, it suffices to show that

1 ≤
∑
H

∑
I clique of H

(−1)|I|−1 ,(4.24)

where H runs over all connected components of G[Vω]. Corollary 3.1.10, applied
to the convex geometry (VH , cH) of the preceding proof, shows that the inner sum
on the right-hand side of (4.24) is equal to 1 and thus proves the result. 2

Remark. (4.22) can also be proved within the general framework of Galambos
and Simonelli [GS96a, GS96b]. Thus, (4.22) originates via [GS96a, Theorem II]
or [GS96b, Theorem I.2] from the following property of chordal graphs: “for any
non-trivial subgraph H of a chordal graph G, the Euler characteristic of the clique
complex of H is at least one.” A detailed proof is left as an option to the reader.

The following theorem complements the second part of the preceding theorem.

Theorem 4.3.2 Let {Av}v∈V be a finite family of sets, and let G = (V, E) and
G′ = (V, E ′) be two chordal graphs such that E is a subset of E ′. Then,

∑
I∈P∗(V )

I clique of G′

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
≤

∑
I∈P∗(V )

I clique of G

(−1)|I|−1 χ

(⋂
i∈I

Ai

)
.

Proof. Again, let ω ∈ ⋃v∈V Av and Vω := {v ∈ V |ω ∈ Av}. We must show that

(4.25)
∑
H′

γ(SH′) ≤
∑
H

γ(SH)

where H and H ′ run over all connected components of G[Vω] and G′[Vω], re-
spectively, and where γ(SH) and γ(SH′) denote the Euler characteristic of the
abstract simplicial complexes SH and SH′, which are defined as in the proof
of Theorem 4.3.1. Recall from the preceding alternative proof of (4.22) that
γ(SH) = γ(SH′) = 1, whence (4.25) holds if and only if the number of connected
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components of G′[Vω] is at most the number of connected components of G[Vω].
Thus, the result follows from the requirement that E is a subset of E ′. 2

Remark. Theorem 4.3.1 generalizes several known results. For a complete graph,
for instance, we obtain the classical Bonferroni upper bound (1.5), whereas for
an edgeless graph we get Boole’s inequality (1.3). In case of a tree we rediscover
the following prominent result due to Hunter [Hun76] and Worsley [Wor82]:

Corollary 4.3.3 [Hun76, Wor82] Let {Av}v∈V be a finite family of sets, where
the indices form the vertices of a tree G = (V, E). Then,

(4.26) χ

( ⋃
v∈V

Av

)
≤
∑
i∈V

χ(Ai) −
∑

{i,j}∈E

χ(Ai ∩ Aj) .

Proof. Since trees are chordal, the corollary follows from Theorem 4.3.1. 2

Remarks. As observed by Hunter [Hun76] and Worsley [Wor82], the best possible
upper bound in (4.26) with respect to some probability measure P is obtained
by choosing a maximum spanning tree G for the complete weighted graph on V ,
where each edge {i, j} has weight P (Ai ∩ Aj). Such a maximum spanning tree
can be found efficiently by applying the greedy algorithm [Kru56, Pri57].

By Corollary 3.1.16, the inequality of Corollary 4.3.3 becomes an identity if
Ax ∩Ay ⊆ Az for any x, y ∈ V and z on the unique path between x and y in G.

By induction on m it follows that all graphs of type Km ∗ Ln (the join of a
complete graph and an edgeless graph) and Km∗Pn (the join of a complete graph
and a path) are chordal and thus give rise to inequalities of Bonferroni-Galambos
type via Theorem 4.3.1. Some of these graphs are shown in Figures 4.6–4.10.
Remarkably, as we will see below, many well-known and new inequalities can be
derived in a unified and simplified way by considering these types of graphs.

The following results of Hunter [Hun76] and Worsley [Wor82] and Kounias
[Kou68] are well-known consequences of (4.26) and thus of Theorem 4.3.1.

Corollary 4.3.4 [Hun76, Wor82] Let A1, . . . , An be sets. Then,

(4.27) χ

(
n⋃

i=1

Ai

)
≤

n∑
i=1

χ(Ai)−
n∑

i=2

χ(Ai−1 ∩Ai) .

Proof. Consider the path G = Pn on n vertices and apply Theorem 4.3.1. 2

Corollary 4.3.5 [Kou68] Let A1, . . . , An be sets. Then, for any j ∈ {1, . . . , n},

(4.28) χ

(
n⋃

i=1

Ai

)
≤

n∑
i=1

χ(Ai)−
n∑

i=1
i6=j

χ(Ai ∩Aj) .
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4321 n

Figure 4.6: The path Pn on n vertices.

Proof. Consider the star G = K1 ∗ Ln−1 and apply Theorem 4.3.1. 2

j

Figure 4.7: The star K1 ∗ Ln−1 for n = 6.

A well-known consequence of Kounias’ inequality is the following result due
to Kwerel [Kwe75b]:

Corollary 4.3.6 [Kwe75b] Let A1, . . . , An be sets. Then,

χ

(
n⋃

i=1

Ai

)
≤

n∑
i=1

χ(Ai)− 2

n

n∑
i,j=1
i<j

χ(Ai ∩ Aj) .

Proof. Take the average over j = 1, . . . , n in Corollary 4.3.5. 2

Our proof of the next inequality due to Seneta [Sen88] is based on the chordal-
ity of the graph K2 ∗ Ln−2. A self-contained proof of this inequality using essen-
tially the same graph was given by Galambos and Simonelli [GS96a, GS96b]. By
Theorem 4.3.2 the inequality is at least as sharp as (4.28) for any j ∈ {1, . . . , n}.
Corollary 4.3.7 [Sen88] Let A1, . . . , An be sets and j, k ∈ {1, . . . , n}. Then,

χ

(
n⋃

i=1

Ai

)
≤

n∑
i=1

χ(Ai)−
n∑

i=1
i6=j

χ(Ai ∩ Aj)−
n∑

i=1
i6=j,k

χ(Ai ∩Ak)

+
n∑

i=1
i6=j,k

χ(Ai ∩Aj ∩ Ak) .

Proof. For j = k the inequality coincides with that of Corollary 4.3.5. For j 6= k
consider the chordal graph G = K2 ∗ Ln−2 and apply Theorem 4.3.1. 2

By applying Corollary 4.3.7 we reprove another result of Kwerel [Kwe75a]:
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j k

Figure 4.8: The graph K2 ∗ Ln−2 for n = 7.

Corollary 4.3.8 [Kwe75a] Let A1, . . . , An be sets where n ≥ 2. Then,

χ

(
n⋃

i=1

Ai

)
≤

n∑
i=1

χ(Ai)− 2n− 3(
n
2

) n∑
i,j=1
i<j

χ(Ai ∩ Aj) +
3(
n
2

) n∑
i,j,k=1
i<j<k

χ(Ai ∩ Aj ∩Ak).

Proof. Take the average over all distinct j, k = 1, . . . , n in Corollary 4.3.7. 2

Remark. For a probability measure P , the upper bound in Corollary 4.3.8 is best
possible among all upper bounds of type t1(n)S1 + t2(n)S2 + t3(n)S3 where

(4.29) Sk =
∑

i1<···<ik

P
(
Ai1 ∩ · · · ∩ Aik

)
,

if n ≤ 3 + b3S3/S2c, cf. [GS96b, Inequality I.8]. An straightforward calculation
shows that the upper bound of Corollary 4.3.8 is at least as sharp as the classical
Bonferroni upper bound of degree three if and only if (n− 2)/(n + 2) ≤ S3/S2.

By Theorem 4.3.2 the following upper bound is at least as sharp as (4.27).

Corollary 4.3.9 Let A1, . . . , An be sets. Then,

χ

(
n⋃

i=1

Ai

)
≤

n∑
i=1

χ(Ai)−
n∑

i=2

χ(Ai−1 ∩ Ai)−
n−1∑
i=2

χ(Ai−1 ∩ An)

+

n−1∑
i=2

χ(Ai−1 ∩Ai ∩An) .

Proof. Consider the graph G = K1 ∗ Pn−1 and apply Theorem 4.3.1. 2

By Theorem 4.3.2 the next bound is at least as sharp as the preceding one.
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1 2 3 4 n-1

n

Figure 4.9: The graph K1 ∗ Pn−1.

Corollary 4.3.10 Let A1, . . . , An be sets. Then,

χ

(
n⋃

i=1

Ai

)
≤

n∑
i=1

χ(Ai)−
n∑

i=2

χ(Ai−1 ∩ Ai)−
n−1∑
i=2

χ(Ai−1 ∩ An)

−
n−2∑
i=2

χ(Ai−1 ∩ An−1) +
n−2∑
i=2

χ(Ai−1 ∩ Ai ∩ An) +
n−2∑
i=2

χ(Ai−1 ∩ Ai ∩ An−1)

+

n−2∑
i=1

χ(Ai ∩ An−1 ∩ An)−
n−2∑
i=2

χ(Ai−1 ∩Ai ∩An−1 ∩An) .

Proof. Consider the graph G = K2 ∗ Pn−2 and apply Theorem 4.3.1. 2

1 2 3 4 n-2

n-1n

Figure 4.10: The graph K2 ∗ Pn−2.

The following inequality is at least as sharp as that of Corollary 4.3.4.

Corollary 4.3.11 Let A1, . . . , An be sets. Then,

χ

(
n⋃

i=1

Ai

)
≤

n∑
i=1

χ(Ai)−
n∑

i=2

χ(Ai−1 ∩ Ai)−
n−1∑
i=2

χ(Ai−1 ∩ Ai+1)

+
n−1∑
i=2

χ(Ai−1 ∩ Ai ∩ Ai+1) .
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Proof. Consider the graph G = (V, E) shown in Figure 4.11 where V = {1, . . . , n}
and E = {{i, j} ⊆ {1, . . . , n} | 1 ≤ |j − i| ≤ 2}, and apply Theorem 4.3.1. 2

1 3 5 n

2 4 6 n-1

n-2

Figure 4.11: The graph in the proof of Corollary 4.3.11 for odd n.

We close this section with a generalization of Boole’s inequality (1.3), Corol-
lary 4.3.6 and Corollary 4.3.8. For even m this generalization coincides with a
special case of an inequality due to Galambos and Xu [GX90]. Our proof, which
is based on the chordal graph sieve of Theorem 4.3.1, is new even in this case.

Theorem 4.3.12 Let A1, . . . , An be sets. Then, for m = 0, . . . , n we have

χ

(
n⋃

i=1

Ai

)
≤

m∑
k=1

(−1)k−1

(
m
k

)(
n
k

) nk − (m + 1)(k − 1)

m− k + 1

∑
i1<···<ik

χ
(
Ai1 ∩ · · · ∩ Aik

)

+ (−1)m m + 1(
n
m

) ∑
i1<···<im+1

χ
(
Ai1 ∩ · · · ∩ Aim+1

)
.

Proof. For m = n the right-hand side of the preceding inequality coincides with
the classical inclusion-exclusion formula, whence in the sequel we may assume
that m < n. For any subset M of {1, . . . , n} let GM denote the join of the com-
plete graph on M and the edgeless graph on the complement of M . By averaging
the right-hand side of (4.22) over all graphs GM with |M | = m we obtain

χ

(
n⋃

i=1

Ai

)
≤ 1(

n
m

) ∑
M⊆{1,...,n}

|M|=m

∑
I∈P∗({1,...,n})
I clique of GM

(−1)|I|−1 χ

(⋂
i∈I

Ai

)

=

m+1∑
k=1

(−1)k−1
∑

I∈P∗({1,...,n})
|I|=k

c(n, m, I)(
n
m

) χ

(⋂
i∈I

Ai

)
,

where c(n, m, I) signifies the number of m-subsets M of {1, . . . , n} such that I is
a clique of GM . Since I is a clique of GM iff I ⊆M or |I \M | = 1, we obtain

c(n, m, I) =

{(
n−|I|
m−|I|

)
+ |I|( n−|I|

m−|I|+1

)
if |I| ≤ m,

m + 1 if |I| = m + 1,
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and hence,

χ

(
n⋃

i=1

Ai

)
≤

m∑
k=1

(−1)k−1

(
n−k
m−k

)
+ k
(

n−k
m−k+1

)
(

n
m

) ∑
i1<···<ik

χ
(
Ai1 ∩ · · · ∩Aik

)

+ (−1)m m + 1(
n
m

) ∑
i1<···<im+1

χ
(
Ai1 ∩ · · · ∩ Aim+1

)
.

The result now follows from the preceding inequality and the binomial identity(
n−k
m−k

)
+ k
(

n−k
m−k+1

)
(

n
m

) =

(
m
k

)(
n
k

) nk − (m + 1)(k − 1)

m− k + 1
,

which is an easy combinatorial exercise. 2



Chapter 5

Reliability Applications

In many practical situations one is interested in the probability that a technical
system with randomly failing components is operating. Examples include trans-
portation networks, electrical power systems, pipeline networks and nuclear power
plants. In recent years, the study of system reliability has received considerable
attention from its applicability to computer and telecommunication networks.

One of the standard methods in reliability theory is the principle of inclusion-
exclusion and the associated Bonferroni inequalities. This chapter deals with
improvements of this method derived from the results of the preceding chapters.
In this way, we rediscover Shier’s semilattice expression and recursive algorithm
for system reliability [Shi88, Shi91] and establish related inequalities based on
abstract tubes. The results are then applied in the more specific context of net-
work reliability, k-out-of-n systems, consecutive k-out-of-n systems and covering
problems, where several results from the literature are rediscovered in a concise
way. Examples demonstrate that the new reliability bounds are much sharper
than the usual Bonferroni bounds, although less computational effort is needed
to compute them. We finally identify a new class of hypergraphs for which the
extremely difficult reliability covering problem can be solved in polynomial time.

For an introduction to reliability theory with emphasis on networks we refer to
the monographs of Colbourn [Col87] and Shier [Shi91]. For a general introduction
to reliability theory we recommend the monograph of Aven and Jensen [AJ99].

5.1 System reliability

The following definition essentially goes back to Esary and Proschan [EP63].

Definition 5.1.1 A coherent system or—to be more precise—a coherent binary
system is a couple Σ = (E, φ) consisting of a finite set E and a function φ from
the power set of E into {0, 1} such that φ(∅) = 0, φ(E) = 1 and φ(X) ≤ φ(Y )
for any X, Y ⊆ E with X ⊆ Y . E and φ are respectively called the component
set and the structure function of Σ. It is supposed that each component e of Σ

53
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assumes randomly and independently one of two states, operating or failing , with
known probabilities pe and qe = 1 − pe, respectively. Σ is said to be operating
resp. failing if φ applied to the set of operating components, which is also referred
to as the state of Σ, gives 1 resp. 0. The probability that Σ is operating is referred
to as the reliability of Σ and abbreviated to RelΣ(p), where p = (pe)e∈E.

Remark. Note that by the preceding definition the components of a coherent
system operate and fail in a statistically independent fashion. Of course, this
definition could be relaxed by allowing dependent component failures, and indeed
most of our inclusion-exclusion expressions for system and network reliability can
easily be adapted to this more general setting. For ease of presentation, however,
we prefer to use the more restrictive definition. A generalization to dependent
component failures is (whenever possible) left as an option to the reader.

A key role in calculating RelΣ(p) is played by the minpaths and mincuts of Σ:

Definition 5.1.2 A minpath of a coherent binary system Σ = (E, φ) is a minimal
set P ⊆ E such that φ(P ) = 1; that is, φ(P ) = 1 and φ(Q) = 0 for any proper
subset Q of P . A mincut of Σ is a minimal set C ⊆ E such that φ(E \ C) = 0;
that is, φ(E \ C) = 0 and φ(E \D) = 1 for any proper subset D of C.

Thus, with F denoting the set of minpaths resp. mincuts,

RelΣ(p) = P

( ⋃
F∈F
{F operates}

)
resp. 1−RelΣ(p) = P

( ⋃
F∈F
{F fails}

)
,

where P denotes the probability measure on the set of system states and where

{F operates} :=
⋂
e∈F

{e operates}; {F fails} :=
⋂
e∈F

{e fails}

for any F ∈ F. In the following, C(F) is used to denote the order complex of F.

Theorem 5.1.3 [Doh99d] Let Σ = (E, φ) be a coherent binary system, whose
set of minpaths resp. mincuts F is given the structure of a lower semilattice such
that X ∧ Y ⊆ X ∪ Y for any X, Y ∈ F. Then,({{F operates}}

F∈F,C(F)
)

resp.
({{F fails}}

F∈F,C(F)
)

is an abstract tube.

Proof. Apply Corollary 4.2.13 (dualized) with V := F and AF := {F operates}
resp. AF := {F fails} for any F ∈ F. 2

Remark. The improved inclusion-exclusion identities associated with the abstract
tubes of the preceding theorem are due to Shier [Shi88, Shi91], whereas the
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corresponding inequalities are due to the author [Doh99c]. Subsequently, the
improved inclusion-exclusion identities and Bonferroni inequalities are explicitly
stated. Note that they specialize to the usual inclusion-exclusion identities and
Bonferroni inequalities for system reliability if F is a chain, that is, if X ∧Y = X
or X ∧ Y = Y for any X, Y ∈ F. In this case, of course, C(F) equals P∗(F).

Theorem 5.1.4 [Doh99c] Let Σ = (E, φ) be a coherent binary system, whose set
of minpaths resp. mincuts F is a lower semilattice such that X ∧ Y ⊆ X ∪ Y for
any X, Y ∈ F, and let r ∈ N . Then, in case that F denotes the set of minpaths,

RelΣ(p) ≥
∑
I∈C(F)
|I|≤r

(−1)|I|−1
∏

e∈S I
pe (r even),

RelΣ(p) ≤
∑
I∈C(F)
|I|≤r

(−1)|I|−1
∏

e∈S I
pe (r odd),

and in case that F denotes the set of mincuts,

1− RelΣ(p) ≥
∑
I∈C(F)
|I|≤r

(−1)|I|−1
∏

e∈S I
qe (r even),

1− RelΣ(p) ≤
∑
I∈C(F)
|I|≤r

(−1)|I|−1
∏

e∈S I
qe (r odd),

where in both cases p = (pe)e∈E ∈ [0, 1]E and qe = 1− pe for any e ∈ E.

Proof. The result directly follows from Theorem 5.1.3 and Theorem 4.1.11. 2

Remarks. In view of Theorem 4.1.12 the inequalities provided by Theorem 5.1.4
are at least as sharp as the usual Bonferroni inequalities for system reliability.

Note that Theorem 5.1.4 can easily be generalized to dependent component
failures by replacing

∏
e∈S I pe resp.

∏
e∈S I qe with the probability that all com-

ponents in
⋃
I work resp. fail. The same applies to the following theorem:

Theorem 5.1.5 [Shi88, Shi91] Let Σ = (E, φ) be a coherent binary system,
whose set of minpaths resp. mincuts F is a lower semilattice such that X ∧ Y ⊆
X ∪ Y for any X, Y ∈ F. Then, in case that F denotes the set of minpaths,

RelΣ(p) =
∑
I∈C(F)

(−1)|I|−1
∏

e∈S I
pe ,

and in case that F denotes the set of mincuts,

1− RelΣ(p) =
∑
I∈C(F)

(−1)|I|−1
∏

e∈S I
qe ,

where in both cases p = (pe)e∈E ∈ [0, 1]E and qe = 1− pe for any e ∈ E.
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Proof. Theorem 5.1.5 is an immediate consequence of Theorem 5.1.4. Alterna-
tively, it can be deduced from the dual version of Corollary 3.1.22 in the same
way as Theorem 5.1.3 is deduced from the dual version of Corollary 4.2.13. 2

The following theorem, which is due to Shier [Shi88, Shi91], generalizes some
results of Provan and Ball [PB84, BP87] on two-terminal and source-to-T -terminal
network reliability. The theorem requires the following notion of convexity:

Definition 5.1.6 A subset X of a partially ordered set V is convex if [x, y] ⊆ X
for any x, y ∈ X, where [x, y] denotes the interval {z ∈ V | x ≤ z ≤ y}.
Theorem 5.1.7 [Shi88, Shi91] Let Σ = (E, φ) be a coherent binary system,
whose set of minpaths resp. mincuts F is a lower semilattice such that X ∧ Y ⊆
X ∪ Y for any X, Y ∈ F and {F ∈ F | e ∈ F} is convex for any e ∈ E. Then,

RelΣ(p) =
∑
F∈F

Λ(F,p) resp. 1− RelΣ(p) =
∑
F∈F

Λ(F,q) ,(5.1)

where q = 1− p ∈ [0, 1]E and where in both cases Λ is defined recursively by

(5.2) Λ(F,x) :=
∏
e∈F

xe −
∑
G<F

Λ(G,x)
∏

e∈F\G
xe ; x = (xe)e∈E ∈ [0, 1]E .

Based on Theorem 3.3.1 we now establish a new and simplified proof of The-
orem 5.1.7, which does not make use of the disjoint products technique:

Proof. We apply Theorem 3.3.1 (dualized) with V := F and AF := {F operates}
resp. AF := {F fails}. By the assumptions, AX ∩AY ⊆ AX∧Y for any X, Y ∈ F.
Define Be := {e operates} resp. Be := {e fails} for any e ∈ E. Then, for any
F ∈ F, AF =

⋂
e∈F Be and thus, by Theorem 3.3.1, we have to check that

P

( ⋂
i∈I1

Bi

∣∣∣∣∣
⋂
i∈I2

Bi ∩ · · · ∩
⋂
i∈Ik

Bi

)
= P

( ⋂
i∈I1

Bi

∣∣∣∣∣
⋂
i∈I2

Bi

)

for any chain I1 > · · · > Ik in F where k > 1 and where P again denotes the
induced probability measure on the set of system states. Since the components
of the system are assumed to operate and fail independently, we find that

P

( ⋂
i∈I1

Bi

∣∣∣∣∣
⋂
i∈I2

Bi ∩ · · · ∩
⋂
i∈Ik

Bi

)
= P


 ⋂

i∈I1\(I2∪···∪Ik)

Bi


 .

By the convexity assumption, I1 \ (I2 ∪ · · · ∪ Ik) = I1 \ I2 and therefore,

P


 ⋂

i∈I1\(I2∪···∪Ik)

Bi


 = P


 ⋂

i∈I1\I2
Bi


 = P

( ⋂
i∈I1

Bi

∣∣∣∣∣
⋂
i∈I2

Bi

)
,
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where the last equals sign again follows from the independence assumption. 2

Remarks. In view of Theorem 3.3.2, replacing “<” with “>” in (5.2) would result
in a different recursive scheme for RelΣ(p). By suitably adapting Algorithm I,
we obtain Shier’s dynamic programming solution to (5.1) and (5.2), which is re-
stated as Algorithm II. As pointed out by Shier [Shi88, Shi91], this algorithm has
a space complexity of O(|F|) and a time complexity of O(|E| × |F|2), since there
are at most O(|F|2) products to be calculated in line 7 and the calculation of each
requires at most O(|E|) work. Thus, the algorithm is pseudopolynomial, that is,
its running time is bounded by a polynomial in the number of components and
the number of minpaths resp. mincuts. The classical inclusion-exclusion method
for the same problem has a time complexity of O(|E| × 2|F|). While the classical
inclusion-exclusion method and its improvements provided by Theorem 5.1.4 and
Theorem 5.1.5 can easily be adapted to deal with statistically dependent compo-
nent failures, Theorem 5.1.7 strongly relies on the independence assumption.

Algorithm II Pseudopolynomial algorithm for computing system reliability

Require: Same requirements as in Theorem 5.1.7; x = (xe)e∈E ∈ [0, 1]E

Ensure: prob =
∑

F∈F Λ(F,x)
1: Find an ordering F1, . . . , Fn of F such that Fi < Fj ⇒ i < j (i, j = 1, . . . , n)
2: prob← 0
3: for i = 1 to n do
4: acc← 0
5: for j = 1 to i− 1 do
6: if Fj < Fi then
7: acc← acc + a[j]

∏
e∈Fi\Fj

xe

8: end if
9: end for

10: a[i]←∏
e∈Fi

xe − acc
11: prob← prob + a[i]
12: end for

In the same way as Theorem 5.1.7 follows from Theorem 3.3.1, the following
inequalities follow from Theorem 3.3.3. These inequalities ensure that during
execution of Algorithm II, prob provides a lower bound to the desired value.

Theorem 5.1.8 Under the requirements of Theorem 5.1.7,

RelΣ(p) ≥
∑
F∈F′

Λ(F,p) resp. 1− RelΣ(p) ≥
∑
F∈F′

Λ(F,q)

for any subset F′ of F, where q = 1− p and Λ is defined recursively as in (5.2).
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Remark. Without modifying the proofs, the preceding theorems can be general-
ized by imposing the somewhat weaker requirement that F is an extended set of
minpaths resp. mincuts of Σ. These concepts are introduced subsequently:

Definition 5.1.9 An extended set of minpaths of a coherent binary system Σ is
an upper set F of the set of minpaths of Σ such that any F ∈ F is an upper set
of some minpath of Σ. An extended set of mincuts of Σ is an upper set F of the
set of mincuts of Σ such that any F ∈ F is an upper set of some mincut of Σ.

The rest of this section is devoted to general domination theory.

Definition 5.1.10 Let Σ = (E, φ) be a coherent binary system, whose set of
minpaths resp. mincuts is denoted by F. An F-formation of a subset X of E is
any subset I of F such that

⋃
I = X. An F-formation I of X is odd resp. even

if |I| is odd resp. even. The F-domination of X, domF(X), is the number of odd
F-formations of X minus the number of even F-formations of X.

The concept of domination was introduced by Satyanarayana and Prabhakar
[SP78] in the specific context of source-to-terminal reliability of directed networks.
The following well-known proposition yields condensed inclusion-exclusion formu-
lae for system reliability based on the concept of domination. These condensed
formulae contain no cancelling terms, and in this sense they are best possible
among all inclusion-exclusion expansions. However, apart from some particu-
lar measures associated with directed networks [SP78, SH81, Sat82] and con-
secutively connected systems [KP89, SM91] the determination of domF(X) is a
tiresome task and in fact amounts to computing the Möbius function of a lattice.

Proposition 5.1.11 [SP78] Let Σ = (E, φ) be a coherent binary system, whose
set of minpaths resp. mincuts is denoted by F. Then,

RelΣ(p) =
∑

X∈P∗(E)

domF(X)
∏
e∈X

pe ,

respectively

1− RelΣ(p) =
∑

X∈P∗(E)

domF(X)
∏
e∈X

qe ,

where p = (pe)e∈E ∈ [0, 1]E and qe = 1− pe for any e ∈ E.

Proof. The proposition follows by traditional inclusion-exclusion. 2

Definition 5.1.12 For any set F of minpaths or mincuts we use F∗ to denote the
set of all unions of sets in F including the empty set, that is, F∗ :=

{⋃
I
∣∣ I ⊆ F}.
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Clearly, F∗ is a lattice with respect to the usual inclusion order. The following
interpretation of domF(X) in terms of the Möbius function of F∗ is due to Manthei
[Man90, Man91] and proved here in a new and simplified way without making
use of Rota’s crosscut theorem [Rot64]. Let us first define the Möbius function:

Definition 5.1.13 The Möbius function of a finite partially ordered set P with
least element 0̂ is the unique Z-valued function µP on P such that for any x ∈ P ,

(5.3)
∑
y≤x

µP (y) = δ0̂x ,

where δ is the usual Kronecker delta.

Proposition 5.1.14 [Man90, Man91] Let Σ = (E, φ) be a coherent binary sys-
tem, whose set of minpaths resp. mincuts is denoted by F. Then, for any X ∈ F∗,

domF(X) = −µF∗(X) .

Proof. By the definition of the Möbius function it suffices to prove that

∑
Y ∈F∗
Y ⊆X

domF(Y ) =

{
−1 if X = ∅,
0 otherwise,

which is clear if X = ∅. Otherwise, F|X := {F ∈ F |F ⊆ X} 6= ∅ and hence,∑
Y ∈F∗
Y ⊆X

domF(Y ) =
∑
Y ∈F∗
Y ⊆X

∑
I⊆FS
I=Y

(−1)|I|−1 =
∑
I⊆FS
I⊆X

(−1)|I|−1 =
∑
I⊆F|X

(−1)|I|−1 = 0 ,

which gives the result. 2

The c-domination of Section 3.1 is related to the F-domination as follows:

Proposition 5.1.15 Let Σ = (E, φ) be a coherent binary system, whose set of
minpaths resp. mincuts is denoted by F, and let cF denote the closure operator
I 7→ {

F ∈ F ∣∣F ⊆ ⋃ I} on F. Then, for any X ∈ F∗,

domF(X) = (−1)|F|X|−1domcF(F|X) ,

where

F|X := {F ∈ F |F ⊆ X} .

Proof. Evidently, F|X is cF-closed. Hence, by Proposition 3.1.24, we obtain∑
I⊆F|X

cF(I)=F|X

(−1)|I|−1 = (−1)|F|X|−1domcF(F|X) .

Now, cF(I) = F|X if and only if I is an F-formation of X. Thus, the left-hand
side of the preceding equation coincides with the F-domination of X. 2
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5.2 Network reliability

Throughout this section, a network is viewed as a finite graph or digraph, whose
nodes or vertices are perfectly reliable and whose edges, which are either undi-
rected or directed, are subject to random and independent failure, where all fail-
ure probabilities are assumed to be known in advance. The reader should keep in
mind that the improved inclusion-exclusion identities and Bonferroni inequalities
in this section can easily be generalized to dependent edge failures provided the
joint probability distribution of the edge failures is known. The general objective
is to assess the overall reliability of the network relative to a given reliability
measure. Some relevant reliability measures are reviewed subsequently.

The source-to-terminal reliability or two-terminal reliability of a network is
the probability that a message can pass from a distinguished source node s to
a distinguished terminal node t along a path of operating edges. Here and sub-
sequently, paths are considered as directed if the network is directed and as
undirected if the network is undirected, and it is assumed that there is always an
operating path from each node to itself. The problem of computing the source-to-
terminal reliability for a distinguished source node s and a distinguished terminal
node t is usually referred to as the s, t-connectedness problem. It has been stud-
ied extensively in the literature (see e.g., [Shi91] for a comprehensive account).
An appropriate model for the source-to-terminal reliability measure is a coherent
binary system Σ = (E, φ), where E is the edge-set of the network and φ(X) = 1
if and only if X contains the edges of an s, t-path. Evidently, the minpaths and
mincuts of the system correspond to the s, t-paths and s, t-cutsets (= minimal
sets of edges whose removal disconnects s from t) of the network, respectively.

As a generalization of the s, t-connectedness problem, the s, T -connectedness
problem asks for the probability that a message can be sent from a distinguished
source node s to each node of some specified set T along a path of operating edges.
This probability is usually referred to as the source-to-T -terminal reliability. An
appropriate model for dealing with this network reliability measure is a coherent
binary system Σ = (E, φ), where E is the edge-set of the network and φ(X) = 1 if
and only if X contains the edges of an s, T -tree (= minimal subnetwork containing
an s, t-path for all t ∈ T ). In this case, the minpaths of the system correspond
to the s, T -trees of the network and the mincuts to its s, T -cutsets (= minimal
sets of edges whose removal disconnects s from at least one node in T ).

A huge literature exists on the all-terminal reliability (see e.g., [Col87] for an
extensive account), which expresses the probability that a message can be sent
between any two nodes of the network along a path of operating edges. In the case
of an undirected network, for instance, the appropriate model is a coherent binary
system Σ = (E, φ), where E is the edge-set of the network and φ(X) = 1 if and
only if the subnetwork induced by X is connected. Thus, in the undirected case
the minpaths correspond to the spanning trees of the network and the mincuts
to its cutsets (= minimal sets of edges whose removal disconnects the network).
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The methods of the preceding section require a generation of the minpaths
resp. mincuts as well as an appropriate semilattice structure on the set of these
objects. For most relevant network reliability measures these key objects can be
generated quite efficiently, that is, their generation time grows only polynomially
(or even linearly) with their number. For instance, Tsukiyama et al. [TSOA80]
devised an efficient algorithm for generating all s, t-cutsets in an undirected net-
work that has a time complexity of only O((n+m)cst) where n, m and cst denote
the number of nodes, edges and s, t-cutsets of the network, respectively. More re-
cently, Provan and Shier [PS96] established a unifying paradigm for generating all
s, t-cutsets and several other classes of cuts in directed and undirected networks
that exhibits a worst-case time complexity growing only linearly with the number
of objects generated. Efficient algorithms for generating s, t-paths are provided
by Read and Tarjan [RT75] as well as Colbourn [Col87]. Shier [Shi91] describes
several algebraic enumeration techniques for generating these key objects based
on a symbolic version of the Gauss-Jordan elimination algorithm.

Unfortunately, the number of key objects can grow exponentially with the
size (= number of nodes and edges) of the network, whence the methods of the
preceding section exhibit an exponential time behaviour in the worst case. On the
other hand, the computation of nearly all relevant network reliability measures
is known to be #P -hard [Val79, Bal86] (see also Garey and Johnson [GJ79] for
notions of computational complexity), whence a polynomial time algorithm (that
is, an algorithm whose time complexity is bounded by a polynomial in the size
of the network) for exactly computing any of these measures is unlikely to exist.
Fortunately, though, in many practical situations the networks are sparse and
thus do not have too many minpaths or mincuts. In view of this and the fact that
the method of inclusion-exclusion is a standard method in system and network
reliability analysis, it is reasonable to investigate improvements of this method.

Now, in order to apply the results of the preceding section to a network, an
appropriate partial ordering relation on the set of minpaths resp. mincuts (or,
more generally, on an extended set of minpaths resp. mincuts) must be imposed.
The following partial ordering relations, which are adopted from Shier [Shi88,
Shi91], are appropriate for dealing with the source-to-terminal reliability measure:

(i) For edge-sets X and Y of s, t-paths in a planar network define

X ≤ Y :⇔ X lies below Y .

Of course, this partial ordering relation depends on a specific drawing of
the network in the plane with no edges crossing and with s and t lying on
the boundary of the exterior region. Figure 5.1 clarifies this concept.

(ii) For s, t-cutsets X and Y of an arbitrary network define

X ≤ Y :⇔ Ns(X) ⊆ Ns(Y ) ,

where Ns(X) is the set of nodes reachable from s after removing X.
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It is easy to see that these partial ordering relations induce a lattice structure,
where X ∧ Y and X ∨ Y are included in X ∪ Y . Moreover, both partial ordering
relations satisfy the convexity requirement of Theorem 5.1.7. We thus conclude
that Theorems 5.1.3–5.1.8 can be applied to networks whose s, t-paths resp. s, t-
cutsets are ordered as in (i) resp. (ii). For s, t-paths in planar networks, ordered
as in (i), the improved inclusion-exclusion identity associated with the abstract
tube of Theorem 5.1.3 is due to Shier [Shi88, Shi91], while the associated im-
proved Bonferroni inequalities are due to the author [Doh99d]. For s, t-cutsets of
arbitrary networks, ordered as in (ii), the improved inclusion-exclusion identity
associated with the abstract tube of Theorem 5.1.3 coincides with Buzacott’s node
partition formula [BC84, Buz87], whereas the improved inequalities were first es-
tablished in [Doh99d]. For complete undirected networks on n nodes the classical
and improved inclusion-exclusion identity for two-terminal reliability based on the
s, t-cutsets of the network are compared in [Vog99] for some small values of n,
see Table 5.2 for details. In [Vog99] similar results were reported for random
undirected networks. We further remark that Theorem 5.1.7, when applied to
s, t-cutsets, specializes to a well-known result of Provan and Ball [PB84], whereas
for s, t-paths it is again due to Shier [Shi88, Shi91]. For further informations on
these partial ordering relations, the reader is referred to Shier [Shi88, Shi91].

s t

X Y

inf(X,Y)

Figure 5.1: Two s, t-paths and their infimum [Shi91].

n u m b e r o f t e r m s
n classical

(
22n−2)

improved

3 4 4
4 16 12
5 256 52
6 65535 300
7 4294967296 2164
8 18446744073709551616 18732

Figure 5.2: Classical and improved inclusion-exclusion [Vog99].

In general, it is difficult to find a partial ordering relation on the set of s, t-
paths or s, T -cutsets of a directed network such that the requirements of Theo-
rem 5.1.7 are satisfied, since otherwise we could devise an algorithm for computing
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two-terminal resp. source-to-T -terminal reliability whose time complexity would
be bounded by a polynomial in the size of the network and the number of s, t-
paths resp. s, T -cutsets. By a well-known result of Provan and Ball [PB84] such
an algorithm cannot exist unless the complexity classes P and NP coincide.

For complete networks, however, we subsequently establish a partial ordering
relation on the set of s, T -cutsets that satisfies the requirements of Theorem 5.1.7:

(iii) For s, T -cutsets X and Y of a complete network define X ≤ Y as in (ii).

Indeed, this partial ordering relation induces a lower semilattice such that X∧Y ⊆
X ∪ Y ; see [Doh98b] for details. The convexity requirement is easily verified.

We remark that for s, t-cutsets of arbitrary networks, the recursive scheme
of Theorem 5.1.7 is due to Provan and Ball [PB84], whereas for s, T -cutsets of
complete networks, it is a special case of a result of Ball and Provan [BP87].

As in [Doh99c], we now establish a partial ordering relation, which is appro-
priate for dealing with the all-terminal reliability of an undirected network and
which leads to an improvement upon the classical inclusion-exclusion identities
and inequalities if the network is sufficiently dense. To this end, let G be an
undirected network with vertex-set V , and for any non-empty proper subset W
of V let 〈W 〉 be the quasi-cut associated with W , that is, the set of edges linking
some node in W to some node in V \W . Then, F := {〈W 〉 | ∅ 6= W ⊂ V } is an
extended set of mincuts of the coherent binary system associated with G and the
all-terminal reliability measure. Note that F coincides with the set of cutsets of
the network if and only if the network is complete. Now, fix some v ∈ V , and

(iv) for any non-empty proper subsets W1 and W2 of V containing v define

〈W1〉 ≤ 〈W2〉 :⇔ W1 ⊆W2 .

In this way, F becomes a lower semilattice where 〈W1〉 ∧ 〈W2〉 = 〈W1 ∩W2〉 ⊆
〈W1〉∪〈W2〉 for any non-empty proper subsets W1 and W2 of V containing v. For
complete undirected networks, whose cutsets are ordered as in (iv), the improved
inclusion-exclusion formula associated with the abstract tube of Theorem 5.1.3
coincides with a particular case of Buzacott’s node partition formula [BC84]. As
noted in [BC84], the formula contains no cancelling terms in this case and thus
is best possible among all cutset-based inclusion-exclusion expansions.

Example 5.2.1 [Doh99c, Doh99d] Consider the network in Figure 5.3. We are
interested in bounds for its two-terminal reliability with respect to s and t. For
simplicity, assume that all edges fail independently with probability q = 1 − p.
Let’s first consider the classical and improved approach based on the s, t-paths
of the network, which are assumed to be partially ordered as proposed in (i).
The Hasse diagram corresponding to this partial ordering relation is shown in
Figure 5.4, and the corresponding bounds (both classical and improved ones) are
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83
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Figure 5.3: A sample network with terminal nodes s and t.

listed in Table 5.1 together with the number of sets inspected during the com-
putation of each bound. Note that the classical bounds come from the classical
Bonferroni inequalities, whereas the improved bounds are those provided by The-
orem 5.1.4. In a similar way, the s, t-cutsets of the network, which are assumed
to be partially ordered as in (ii), give rise to the Hasse diagram in Figure 5.5 and
the bounds in Table 5.3. Note that in Table 5.1 even and odd values of r corre-
spond to lower and upper bounds on the reliability of the network, respectively,
whereas in Table 5.3 the correspondence is vice versa. In each case, the last
bound represents the exact reliability of the network. As expected, the improved
bounds employ much fewer sets than their classical counterparts, although they
are much closer to the exact reliability value. A numerical comparison of classical
and improved bounds is shown in Tables 5.2 and 5.4, and in Figures 5.6 and 5.7
some of the bounds are plotted. We observe that both classical and improved
bounds based on the s, t-paths of the network are satisfactory only for small val-
ues of p (the less typical case), whereas the bounds based on the s, t-cutsets of
the network are satisfactory only for small values of q (the more typical case).

To illustrate the bounds provided by Theorem 5.1.8, we consider the Hasse
diagram of s, t-paths in Figure 5.4. (Of course, we could also employ the s, t-
cutsets.) Straightforward application of the recursive scheme (5.2) gives

Λ(38) = p2, Λ(27) = p2 − 3p4 + 2p5,

Λ(258) = p3 − p4, Λ(3546) = p4 − 2p5 + p6,

Λ(357) = p3 − p4, Λ(147) = p3 − p4 − 3p5 + 5p6 − 2p7,

Λ(1458) = p4 − 2p5 + p6, Λ(246) = p3 − p4 − 3p5 + 5p6 − 2p7,

where the expression Λ(e1 . . . en) is used as an abbreviation for Λ({e1, . . . , en},p).
Now, by virtue of Theorem 5.1.8, these Λ-values give rise to lower bounds for the
two-terminal reliability of our sample network in Figure 5.3. We thus obtain e.g.
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the following lower bounds, which are plotted in Figure 5.8:

c0 := Λ(38) = p2,

c1 := c0 + Λ(258) + Λ(357) = p2 + 2p3 − 2p4,

c2 := c1 + Λ(1458) + Λ(27) + Λ(3546) = 2p2 + 2p3 − 3p4 − 2p5 + 2p6,

c3 := c2 + Λ(147) + Λ(246) = 2p2 + 4p3 − 5p4 − 8p5 + 12p6 − 4p7.

In a similar way, bounds for the all-terminal reliability of the network in
Figure 5.3 are obtained by employing the cutsets and quasi-cuts of the network.
The Hasse diagram of the quasi-cuts, which are assumed to be partially ordered
as in (iv), is shown in Figure 5.9, and the corresponding bounds can be read from
Table 5.5 together with the number of sets inspected during the computation of
each bound. Here, the classical bounds are the classical Bonferroni bounds based
on the cutsets of the network, whereas the improved bounds are obtained by
applying Theorem 5.1.4 to the quasi-cuts of the network. Note that in Table 5.5
even and odd values of r correspond to upper and lower bounds on the exact value,
respectively. Again, we observe that the improved Bonferroni bounds are much
sharper than the classical bounds. Some numerical values are shown in Table 5.6.



CHAPTER 5. RELIABILITY APPLICATIONS 66

38

357258

3546271458

246147

16

Figure 5.4: Hasse diagram of s, t-paths of the network in Figure 5.3.

123

1258134572346

1478245683567

678

Figure 5.5: Hasse diagram of s, t-cutsets of the network in Figure 5.3.
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c l a s s i c a l b o u n d s i m p r o v e d b o u n d s
r ar(p) # sets a∗

r(p) # sets

1 3p2 + 4p3 + 2p4 9 3p2 + 4p3 + 2p4 9
2 3p2 + 4p3 − 9p4 − 16p5 − 9p6 45 3p2 + 4p3 − 9p4 − 14p5 − 2p6 36
3 3p2 + 4p3 − 9p4 − 8p5 + 34p6 + 30p7 + 3p8 129 3p2 + 4p3 − 9p4 − 10p5 + 27p6 + 4p7 73
4 3p2 + 4p3 − 9p4 − 10p5 + 27p6 − 50p7 − 34p8 255 3p2 + 4p3 − 9p4 − 10p5 + 27p6 − 18p7 − 2p8 97
5 3p2 + 4p3 − 9p4 − 10p5 + 27p6 − 12p7 + 54p8 381 3p2 + 4p3 − 9p4 − 10p5 + 27p6 − 18p7 + 4p8 103
6 3p2 + 4p3 − 9p4 − 10p5 + 27p6 − 18p7 − 24p8 465
7 3p2 + 4p3 − 9p4 − 10p5 + 27p6 − 18p7 + 12p8 501
8 3p2 + 4p3 − 9p4 − 10p5 + 27p6 − 18p7 + 3p8 510
9 3p2 + 4p3 − 9p4 − 10p5 + 27p6 − 18p7 + 4p8 511

Table 5.1: Path-based bounds for the two-terminal reliability of the network in Figure 5.3.

p a2(p) a∗
2(p) a4(p) a∗

4(p) a6(p) a∗
6(p)† a∗

5(p)† a5(p) a∗
3(p) a3(p)

0.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.1 0.03293 0.03296 0.03302 0.03303 0.03303 0.03303 0.03303 0.03303 0.03303 0.03306
0.2 0.13190 0.13299 0.13540 0.13589 0.13584 0.13591 0.13591 0.13611 0.13618 0.13761
0.3 0.25966 0.26962 0.28732 0.29642 0.29497 0.29681 0.29681 0.30140 0.30136 0.31720
0.4 0.3049 0.35405 0.40959 0.48299 0.46857 0.48692 0.48692 0.52952 0.52035 0.61406
0.5 0.04688 0.21875 0.27344 0.64844 0.56250 0.67188 0.67188 0.91406 0.82813 1.21484
0.6 -0.88646 -0.40435 -0.71104 0.72224 0.35272 0.82301 0.82301 1.83078 1.37169 2.63202

†exact network reliability

Table 5.2: Numerical values of the bounds in Table 5.1.
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c l a s s i c a l b o u n d s i m p r o v e d b o u n d s
r br(q) # sets b∗r(q) # sets

1 1− 2q3 − 4q4 − 2q5 9 1− 2q3 − 4q4 − 2q5 9
2 1− 2q3 − 4q4 + 2q5 + 13q6 + 10q7 + q8 37 1− 2q3 − 4q4 + 2q5 + 13q6 + 2q7 28
3 1− 2q3 − 4q4 + 2q5 + 13q6 − 22q7 − 23q8 93 1− 2q3 − 4q4 + 2q5 + 13q6 − 14q7 − 2q8 46
4 1− 2q3 − 4q4 + 2q5 + 13q6 − 14q7 + 39q8 163 1− 2q3 − 4q4 + 2q5 + 13q6 − 14q7 + 4q8 52
5 1− 2q3 − 4q4 + 2q5 + 13q6 − 14q7 − 17q8 219
6 1− 2q3 − 4q4 + 2q5 + 13q6 − 14q7 + 11q8 247
7 1− 2q3 − 4q4 + 2q5 + 13q6 − 14q7 + 3q8 255
8 1− 2q3 − 4q4 + 2q5 + 13q6 − 14q7 + 4q8 256

Table 5.3: Cutset-based bounds for the two-terminal reliability of the network in Figure 5.3.

q b3(q) b∗3(q) b5(q) b∗5(q)† b∗4(q)† b4(q) b∗2(q) b2(q)

0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.1 0.99763 0.99763 0.99763 0.99763 0.99763 0.99763 0.99763 0.99763
0.2 0.97873 0.97889 0.97885 0.97890 0.97890 0.97899 0.97910 0.97920
0.3 0.92162 0.92474 0.92376 0.92514 0.92514 0.92743 0.92837 0.93019
0.4 0.79221 0.81908 0.80925 0.82301 0.82301 0.84595 0.84661 0.86037
0.5 0.50391 0.64844 0.58984 0.67188 0.67188 0.80859 0.78125 0.84766
0.6 -0.19052 0.38615 0.13420 0.48692 0.48692 1.07479 0.86764 1.10838

†exact network reliability

Table 5.4: Numerical values of the bounds in Table 5.3.
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Figure 5.6: A plot of some of the bounds in Table 5.1.
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Figure 5.7: A plot of some of the bounds in Table 5.3.
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Figure 5.8: A plot of the path-based bounds c0, c1, c2, c3.
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Figure 5.9: Hasse diagram of quasi-cuts of the network in Figure 5.3.
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c l a s s i c a l b o u n d s i m p r o v e d b o u n d s
r dr(q) # sets d∗r(q) # sets

1 1− 4q3 − 5q4 − 4q5 13 1− 4q3 − 5q4 − 4q5 − 2q6 15
2 1− 4q3 − 5q4 + 8q5 + 44q6 + 20q7 + 2q8 91 1− 4q3 − 5q4 + 4q5 + 30q6 + 8q7 + 2q8 65
3 1− 4q3 − 5q4 + 4q5 + 30q6 − 160q7 − 86q8 377 1− 4q3 − 5q4 + 4q5 + 30q6 − 40q7 − 10q8 125
4 1− 4q3 − 5q4 + 4q5 + 30q6 + 40q7 + 429q8 1092 1− 4q3 − 5q4 + 4q5 + 30q6 − 40q7 + 14q8 149
5 1− 4q3 − 5q4 + 4q5 + 30q6 − 68q7 − 750q8 2379
6 1− 4q3 − 5q4 + 4q5 + 30q6 − 36q7 + 934q8 4095
7 1− 4q3 − 5q4 + 4q5 + 30q6 − 40q7 − 778q8 5811
8 1− 4q3 − 5q4 + 4q5 + 30q6 − 40q7 + 509q8 7098
9 1− 4q3 − 5q4 + 4q5 + 30q6 − 40q7 − 206q8 7813

10 1− 4q3 − 5q4 + 4q5 + 30q6 − 40q7 + 80q8 8099
11 1− 4q3 − 5q4 + 4q5 + 30q6 − 40q7 + 2q8 8177
12 1− 4q3 − 5q4 + 4q5 + 30q6 − 40q7 + 15q8 8190
13 1− 4q3 − 5q4 + 4q5 + 30q6 − 40q7 + 14q8 8191

Table 5.5: Bonferroni bounds for the all-terminal reliability of the network in Figure 5.3.

q d1(q) d∗1(q) d3(q) d∗3(q) d5(q) d∗5(q)† d∗4(q)† d4(q) d∗2(q) d2(q)

0.00 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.10 0.99546 0.99546 0.99555 0.99557 0.99556 0.99557 0.99557 0.99558 0.99557 0.99563
0.20 0.95872 0.95859 0.96093 0.96266 0.96041 0.96272 0.96272 0.96481 0.96331 0.96564
0.30 0.84178 0.84032 0.84246 0.87369 0.81901 0.87526 0.87526 0.91999 0.88497 0.90752
0.40 0.57504 0.56685 0.46134 0.70775 0.17691 0.72348 0.72348 1.12653 0.79426 0.91222
0.50 0.06250 0.03125 -0.80469 0.42969 -2.67969 0.52344 0.52344 2.76953 0.85156 1.28906
†exact network reliability

Table 5.6: Numerical values of the bounds in Table 5.5.
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5.3 Reliability of k-out-of-n systems

The class of k-out-of-n systems was introduced by Birnbaum, Esary and Saunders
[BES61]; see also Rushdi [Rus93] for an extensive survey. A k-out-of-n success
(resp. failure) system operates (resp. fails) whenever k or more components op-
erate (resp. fail). As for coherent binary systems, it is again assumed that the
components fail randomly and independently (this assumption might be relaxed
in some cases). A formal definition in terms of coherent binary systems follows.

Definition 5.3.1 Let k, n ∈ N and 1 ≤ k ≤ n. A k-out-of-n success (resp.
failure) system is a coherent binary system Σ = (E, φ) where |E| = n and where
for any subset X of E, φ(X) = 1 (resp. φ(E \X) = 0) if and only if |X| ≥ k.

Remark. The minpaths (resp. mincuts) of a k-out-of-n success (resp. failure)
system Σ = (E, φ) are the k-subsets of E. Likewise, the mincuts (resp. minpaths)
of a k-out-of-n success (resp. failure) system Σ = (E, φ) are the (n−k+1)-subsets
of E. Any k-out-of-n success (resp. failure) system is an (n−k+1)-out-of-n failure
(resp. success) system. Thus, we may restrict ourselves to either type of system.

As in [Doh98b] we establish a partial ordering relation on the set of k-subsets
of E, thereby assuming that E is endowed with a linear ordering relation ≤ .

(v) For k-subsets X and Y of a linearly ordered set E define

X ≤ Y :⇔ x ≤ y for all x ∈ X, y ∈ Y \X .

Thus, a partial ordering relation on the set of k-subsets of E is established.
Figure 5.10 shows the associated Hasse diagram for E = {1, . . . , 6} and k = 3.

Again, it is easy to see that the convexity requirement of Theorem 5.1.7 is
satisfied; moreover, X ∧ Y ⊆ X ∪ Y , since X ∧ Y consists of the k smallest
elements of X ∪ Y . Therefore, the results of Section 5.1 can be applied to k-
out-of-n success or failure systems whose k-subsets are ordered as in (v). We
conclude that for fixed k, the time and space complexity of the pseudopolynomial
algorithm (Algorithm II), when applied to the k-subsets of an n-set, are O(n2k+1),
respectively O(nk). Moreover, since n − k is the height of the partial ordering
relation (v), the improved bounds of degree n−k+1 already give the exact value.

For k-out-of-n success or failure systems Σ = (E, φ) we subsequently consider
the number of terms in the improved inclusion-exclusion identity provided by
Theorem 5.1.5, that is, we compute the number of non-empty chains in the poset
of k-subsets of E. Note that in the following theorem, f(t) depends on k.
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Figure 5.10: Hasse diagram for E = {1, . . . , 6} and k = 3.

Theorem 5.3.2 [Doh98b] Let E be a finite set of cardinality n, whose k-subsets
are ordered as in (v). Then, the number of chains in the partially ordered set of
k-subsets of E is equal to 2f(n− k)− 1, where f(0) := 1 and

(5.4) f(t) := 1 +

t−1∑
i=0

(
t− i + k − 1

k − 1

)
f(i) (t = 1, . . . , n− k) .

Proof. For any k-subset P of E, let c(P ) denote the number of chains extending
upward from P . Then, the total number of chains is 2c(0̂) where 0̂ denotes
the minimum in the poset of k-subsets of E. Thus, it remains to show that
c(0̂) = f(n−k). More generally, by induction on t we prove that h(P ) = n−k−t
implies c(P ) = f(t), where h(P ) denotes the height of P . For t = 0 this is
immediately clear, since n− k is the maximum height. Now let the height of P
be n− k − t where t > 0. By the induction hypothesis we find that

c(P ) = 1 +
t−1∑
i=0

∑
Q>P

h(Q)=n−k−i

c(Q) = 1 +
t−1∑
i=0

∑
Q>P

h(Q)=n−k−i

f(i) = 1 +
t−1∑
i=0

s(P, i)f(i)

where s(P, i) := |{Q > P | h(Q) = n − k − i}| (i = 0, . . . , t − 1). We conclude
that s(P, i) = s(P, i + 1)(t− i + k − 1)/(t− i), where s(P, t) := 1, and therefore,

s(P, i) =

(
t− i + k − 1

k − 1

)
, c(P ) = 1 +

t−1∑
i=0

(
t− i + k − 1

k − 1

)
f(i) = f(t) ,

which completes the proof. 2
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In order to compare the number of terms in the improved inclusion-exclusion
identity with the number of terms in the classical inclusion-exclusion expansion
for fixed k and increasing n, it seems reasonable to consider the ratio

%k(n) :=
2f(n− k)− 1

2(n
k) − 1

,(5.5)

where f(t) is defined as in (5.4). It should be clear that the classical inclusion-
exclusion method is not a very effective tool for analyzing k-out-of-n systems.

Theorem 5.3.3 [Doh98b] For any k > 1, limn→∞ %k(n) = 0.

Proof. By Theorem 5.3.2 and since
(

t−i+k−1
k−1

) ≤ kt−i we immediately find that

f(t) ≤ 1 +
t−1∑
i=0

kt−if(i) (t = 0, . . . , n− k) ,

and therefore,

f(t) ≤ 1 + k

t−1∑
i=0

(2k)i = 1 + k
1− (2k)t

1− 2k
(t = 0, . . . , n− k) .

Hence, for fixed k, there are constants c1 and c2 depending only on k such that

%k(n) ≤ c1
(2k)n

2(n
k)
∼ c12

c2n−nk

,

which implies the statement of the theorem. 2

Remark. The following numerical values are computed via (5.4) and (5.5):

%2(6) = 7.0× 10−3 , %3(6) = 1.7× 10−4 , %4(6) = 1.8× 10−3 ,

%2(8) = 1.0× 10−5 , %3(8) = 6.0× 10−14 , %4(8) = 2.1× 10−18 ,

%2(10) = 9.0× 10−10 , %3(10) = 7.6× 10−32 , %4(10) = 5.9× 10−59 .

Example 5.3.4 Consider a 3-out-of-6 success system where, for simplicity, all
components are assumed to operate with equal probability pe ≡ p. Table 5.7
displays both classical and improved bounds on the reliability of the system
together with the number of sets which were inspected during the computation
of each bound. Here, even and odd values of r respectively correspond to lower
and upper bounds on the reliability of the system. The classical bounds are the
usual Bonferroni bounds, whereas the improved bounds are obtained by applying
Theorem 5.1.4 in connection with the partial ordering relation (v), whose Hasse
diagram is shown in Figure 5.10. In Figure 5.11 some of the bounds are plotted.
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c l a s s i c a l b o u n d s i m p r o v e d b o u n d s
r er(p) # sets e∗r(p) # sets

1 20p3 20 20p3 20
2 20p3 − 90p4 − 90p5 − 10p6 210 20p3 − 45p4 − 18p5 − p6 84
3 20p3 − 30p4 + 510p5 + 470p6 1350 20p3 − 45p4 + 36p5 + 17p6 156
4 20p3 − 45p4 − 720p5 − 3130p6 6195 20p3 − 45p4 + 36p5 − 10p6 183
...

...
...

20 20p3 − 45p4 + 36p5 − 10p6 1048575

Table 5.7: Bonferroni bounds for the reliability of a 3-out-of-6 success system.
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Figure 5.11: A plot of some of the bounds in Table 5.7.

Remarks. Sharper and less time demanding bounds for the reliability of a k-out-
of-n success or failure system can be obtained by applying a method of Balagu-
rusamy and Misra [BM75, BM76], rediscovered by Heidtmann [Hei81, Hei82],
which uses generalized Bonferroni-Jordan inequalities [Jor27, GS96b] for the
probability that at least k out of n events occur. For any k-out-of-n success system
Σ = (E, φ) and r ∈ N , the Balagurusamy-Misra-Heidtmann (BMH) bounds are

RelΣ(p) ≥
r+k−1∑

i=k

(−1)i−k

(
i− 1

k − 1

)∑
I⊆E
|I|=i

∏
e∈I

pe (r even),

RelΣ(p) ≤
r+k−1∑

i=k

(−1)i−k

(
i− 1

k − 1

)∑
I⊆E
|I|=i

∏
e∈I

pe (r odd),
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and for any k-out-of-n failure system Σ = (E, φ) and r ∈ N they are given by

1−RelΣ(p) ≥
r+k−1∑

i=k

(−1)i−k

(
i− 1

k − 1

)∑
I⊆E
|I|=i

∏
e∈I

qe (r even),

1−RelΣ(p) ≤
r+k−1∑

i=k

(−1)i−k

(
i− 1

k − 1

)∑
I⊆E
|I|=i

∏
e∈I

qe (r odd),

where in both cases p = (pe)e∈E ∈ [0, 1]E and qe = 1− pe for any e ∈ E.
For the reliability of a 3-out-of-6 success system with equal component re-

liabilities pe ≡ p, for instance, the Balagurusamy-Misra-Heidtmann bounds are
displayed in Table 5.8, where even and odd values of r again correspond to lower
and upper bounds, respectively. It turns out that the BMH bounds are closer to
the exact value than the improved bounds of Table 5.7, while fewer sets are in-
spected during their computation. Note, however, that each term

∑∏
pe has to

be multiplied by a binomial coefficient, which increases the computational effort.

r B MH b o u n d s # sets

1 20p3 20
2 20p3 − 45p4 35
3 20p3 − 45p4 + 36p5 41
4 20p3 − 45p4 + 36p5 − 10p6 42

Table 5.8: BMH bounds for a 3-out-of-6 success system.

For an exact computation of the reliability of a k-out-of-n system, the BMH
method sums

∑n
i=k

(
n
i

)
terms (each multiplied by a binomial coefficient), which is

exponential in n, if k is fixed. In contrast, as we saw above, the time complexity
of the pseudopolynomial algorithm based on our partial ordering relation (v) is
O(n2k+1) and hence polynomially bounded in n. We therefore conclude that the
pseudopolynomial algorithm in connection with our partial ordering relation (v)
is superior to the BMH method if the exact reliability is to be computed. It is,
however, not superior to the most efficient generating function method of Barlow
and Heidtmann [BH84], whose time complexity is linear in n, if k is fixed.

5.4 Reliability of consecutive k-out-of-n systems

Consecutive k-out-of-n success (resp. failure) systems operate (resp. fail) when-
ever k or more consecutive components operate (resp. fail). Again, it is assumed
that the components fail randomly and independently with known probabilities.
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Systems of this type were first considered by Kontoleon [Kon80]; the nomencla-
ture goes back to Chiang and Niu [CN81], who also provide several applications of
this model. For an account of consecutive k-out-of-n systems, we recommend the
survey paper of Papastavridis and Koutras [PK93]. A formal definition follows.

Definition 5.4.1 Let k, n ∈ N , 1 ≤ k ≤ n. A consecutive k-out-of-n success
(resp. failure) system is a coherent binary system Σ = (E, φ) where E is a linearly
ordered finite set of size n and where for any subset X of E, φ(X) = 1 (resp.
φ(E \X) = 0) if and only if X contains at least k consecutive elements of E.

As illustrated by the following example, consecutive k-out-of-n failure systems
serve as a model for a particular type of communication network.

Example 5.4.2 Consider the communication network displayed in Figure 5.12,
where nodes 1–6 are assumed to fail randomly and independently with known
probabilities and all other nodes and edges are assumed to be perfectly reliable.
It is immediately clear that in this network a message can pass from s to t if
and only if no three consecutive nodes among 1–6 simultaneously fail. Thus, the
network is appropriately modelled as a consecutive 3-out-of-6 failure system.

1 2 3 4 5 6s t

Figure 5.12: A consecutive 3-out-of-6 failure network.

In general, X is a minpath (resp. mincut) of a consecutive k-out-of-n success
(resp. failure) system Σ = (E, φ) if and only if X is a consecutive subset of E
containing exactly k elements. The following partial ordering relation on the set
of consecutive k-subsets of E is adopted from Shier [Shi88, Shi91]:

(vi) For any consecutive k-subsets X and Y of a linearly ordered set E define

X ≤ Y :⇔ min X ≤ min Y .

Thus, a partial (in fact: linear) ordering relation on the set of minpaths (resp.
mincuts) of a consecutive k-out-of-n success (resp. failure) system is given, which
satisfies the requirements of Theorem 5.1.7: If X and Y are two consecutive k-
subsets of E, then X ∧ Y = X or X ∧ Y = Y and hence, X ∧ Y ⊆ X ∪ Y .
If X ≤ Y ≤ Z are three consecutive k-subsets of E and e ∈ X ∩ Z, then
min Y ≤ min Z ≤ e ≤ max X ≤ max Y and hence e ∈ Y . Therefore, the require-
ments of Theorem 5.1.7 are satisfied and thus Algorithm II can be applied. Since
the number of minpaths (resp. mincuts) is n− k + 1, the algorithm has a space
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complexity of O(n) and a time complexity of O(n3). In contrast, the time com-
plexity of the classical inclusion-exclusion method for that problem is O(n2n).
Note, however, that the classical method can be adapted to deal with dependent
component failures, whereas Algorithm II relies on the independence assump-
tion of Definition 5.1.1. The same remark as for the classical inclusion-exclusion
method applies to the improved inclusion-exclusion expansion of Kossow and
Preuss [KP89], which involves only O(n4) non-cancelling terms and which is best
possible among all inclusion-exclusion expansions for the reliability of a consec-
utive k-out-of-n system with unequal component reliabilities. For the restricted
case k ≥ n/2 the following theorem provides an improved inclusion-exclusion ex-
pansion that contains only O(n2) terms none of which cancel. Thus, the expansion
is best possible among all inclusion-exclusion expansions for this restricted case.

Theorem 5.4.3 Let Σ be a consecutive k-out-of-n success system whose compo-
nent reliabilities are given by the vector p = (p1, . . . , pn). If k ≥ n/2, then

RelΣ(p) =

n−k+1∑
i=1

i+k−1∏
j=i

pj −
n−k∑
i=1

i+k∏
j=i

pj =

n−k∑
i=1

(1− pi+k)

i+k−1∏
j=i

pj +

n∏
j=n−k+1

pj .

Proof. For i = 1, . . . , n−k+1 let Ai be the event that components i, . . . , i+k−1
operate. Then, RelΣ(p) = Pr(A1 ∪ · · · ∪ An−k+1). Since k ≥ n/2, Ax ∩ Ay ⊆ Az

for x, y = 1, . . . , n − k + 1 and any z between x and y. Thus, by combining
Theorem 3.1.14 with Example 3.1.5 (or by applying Corollary 3.1.16) we obtain

RelΣ(p) =

n−k+1∑
i=1

P (Ai)−
n−k∑
i=1

P (Ai ∩ Ai+1) =

n−k+1∑
i=1

i+k−1∏
j=i

pj −
n−k∑
i=1

i+k∏
j=i

pj =

n−k∑
i=1

i+k−1∏
j=i

pj −
n−k∑
i=1

i+k∏
j=i

pj +

n∏
j=n−k+1

pj =

n−k∑
i=1

i+k−1∏
j=i

pj −
n−k∑
i=1

pi+k

i+k−1∏
j=i

pj +

n∏
j=n−k+1

pj ,

which gives the result. 2

Remark. The first identity in Theorem 5.4.3 can easily be adapted to deal with
dependent components. For independent components, the final expression in
Theorem 5.4.3 can be computed in O(n) steps by means of Algorithm III.

In the case of equal component reliabilities we even obtain a closed formula:

Corollary 5.4.4 Let Σ = (E, φ) be a consecutive k-out-of-n success system
whose component reliabilities are given by p = (p, . . . , p). If k ≥ n/2, then

RelΣ(p) = (n− k + 1)pk − (n− k)pk+1 = pk [(n− k)(1− p) + 1] .
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Proof. Corollary 5.4.4 is an immediate consequence of Theorem 5.4.3. 2

Remarks. Theorem 5.4.3 and Corollary 5.4.4 can equivalently be formulated for
consecutive k-out-of-n failure systems by replacing the preceding identities with

1−RelΣ(p) =
n−k+1∑

i=1

i+k−1∏
j=i

qj −
n−k∑
i=1

i+k∏
j=i

qj =
n−k∑
i=1

(1− qi+k)
i+k−1∏

j=i

qj +
n∏

j=n−k+1

qj

in the case of unequal component failure probabilities qj = 1− pj, and

1−RelΣ(p) = (n− k + 1)qk − (n− k)qk+1 = qk [(n− k)(1− q) + 1]

in the case where all component failure probabilities are equal to q = 1 − p.
This latter identity was first proved by Shanthikumar [Sha82] without making
use of the inclusion-exclusion principle. It should be noted at this point that the
algorithms of Shanthikumar [Sha82] and Hwang [Hwa82] are the most efficient
algorithms for computing the reliability of a consecutive k-out-of-n system. Note,
however, that these most efficient algorithms strongly rely on the assumption that
the components of the system fail in a statistically independent fashion.

We finally remark that by Corollary 4.3.4 the right-hand sides of the preceding
identities give upper bounds on RelΣ(p) resp. 1−RelΣ(p) for arbitrary n and k.

Example 5.4.5 As in Example 5.4.2 we consider the consecutive 3-out-of-6 fail-
ure system associated with the network in Figure 5.12. In view of the preceding re-
marks the reliability of this consecutive 3-out-of-6 failure system is computed as

1− q1q2q3 − q2q3q4 − q3q4q5 − q4q5q6 + q1q2q3q4 + q2q3q4q5 + q3q4q5q6

= 1− (1− q4)q1q2q3 − (1− q5)q2q3q4 − (1− q6)q3q4q5 − q4q5q6 ,

where qi denotes the failure probability of node i (i = 1, . . . , 6). In particular, if
the qi’s are all equal to q, then the reliability equals 1− 4q3 + 3q4. The reader is
invited to obtain the same result by the classical inclusion-exclusion method.

Algorithm III Reliability of a consecutive k-out-of-n system where k ≥ n/2

Require: Components 1, . . . , n work independently with probability p1, . . . , pn

Ensure: acc gives the probability that at least k consecutive components work
1: acc← 0
2: h← p1 . . . pk

3: for i = 1 to n− k do
4: acc← acc + (1− pi+k)h
5: h← hpi+k/pi

6: end for
7: acc← acc + h
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We close this section with a generalization of Theorem 5.4.3, to which the
remarks after Corollary 5.4.4 likewise apply.

Theorem 5.4.6 Let t ∈ N and n1, . . . , nt, k1, . . . , kt ∈ N such that n1 < · · · <
nt ≤ n1 + k1 < · · · < nt + kt. Let Σ be a coherent binary system with components
n1, . . . , nt + kt − 1, minpaths {n1, . . . , n1 + k1 − 1}, . . . , {nt, . . . , nt + kt − 1} and
component reliabilities given by p = (pn1 , . . . , pnt+kt−1). Then, RelΣ(p) equals

t∑
i=1

ni+ki−1∏
j=ni

pj −
t−1∑
i=1

ni+1+ki+1−1∏
j=ni

pj =

t−1∑
i=1

(
1−

ni+1+ki+1−1∏
j=ni+ki

pj

)
ni+ki−1∏

j=ni

pj +

nt+kt−1∏
j=nt

pj .

Proof. For i = 1, . . . , t let Ai be the event that components ni, . . . , ni + ki − 1
operate. It follows that RelΣ(p) = P (A1 ∪ · · · ∪ At) and, by the requirements
of the theorem, Ax ∩ Ay ⊆ Az for x, y = 1, . . . , t and any z between x and y.
Therefore, the same argument as in the proof of Theorem 5.4.3 reveals that

RelΣ(p) =

t∑
i=1

P (Ai)−
t−1∑
i=1

P (Ai ∩ Ai+1) =

t∑
i=1

ni+ki−1∏
j=ni

pj −
t−1∑
i=1

ni+1+ki+1−1∏
j=ni

pj

=

t−1∑
i=1

ni+ki−1∏
j=ni

pj −
t−1∑
i=1

ni+1+ki+1−1∏
j=ni

pj +

nt+kt−1∏
j=nt

pj

=

t−1∑
i=1

ni+ki−1∏
j=ni

pj −
t−1∑
i=1

ni+ki−1∏
j=ni

pj

ni+1+ki+1−1∏
j=ni+ki

pj +

nt+kt−1∏
j=nt

pj

=
t−1∑
i=1

(
1−

ni+1+ki+1−1∏
j=ni+ki

pj

)
ni+ki−1∏

j=ni

pj +
nt+kt−1∏

j=nt

pj . 2

Example 5.4.7 Consider the network in Figure 5.13, where nodes 1–7 are as-
sumed to fail randomly and independently with probabilities q1, . . . , q7 and all
other nodes and edges are perfectly reliable. Again, we are interested in the
probability that a message can pass from s to t along a path of operating nodes.
Thus, an appropriate model is a coherent binary system having components 1–
7 and mincuts {1, 2, 3}, {2, 3, 4}, {3, 4, 5, 6}, {4, 5, 6, 7}. By applying the mincut
analogue of Theorem 5.4.6 the reliability of this system is easily seen to be

1− q1q2q3 − q2q3q4 − q3q4q5q6 − q4q5q6q7 + q1q2q3q4 + q2q3q4q5q6 + q3q4q5q6q7

= 1− (1− q4)q1q2q3 − (1− q5q6)q2q3q4 − (1− q7)q3q4q5q6 − q4q5q6q7 ,

which equals 1− 2q3 − q4 + 2q5 if all node failure probabilities are equal to q.



CHAPTER 5. RELIABILITY APPLICATIONS 81

Remark. The inclusion-exclusion identity of Theorem 5.4.6 contains only non-
cancelling terms. The coefficient of each such term is either +1 or −1. Due to a
result of Shier and McIlwain [SM91], this ±1 property holds for any coherent bi-
nary system whose minpaths (resp. mincuts) are consecutive sets of components.
This strongly generalizes a corresponding result of Kossow and Preuss [KP89],
who showed that this ±1 property holds for any consecutive k-out-of-n system.

1 2 3 4 5 6s t7

Figure 5.13: A consecutive network.

5.5 Reliability covering problems

Reliability covering problems were introduced by Ball, Provan and Shier [BPS91,
Shi91] in order to generalize several types of reliability problems. They serve e.g.
as a model for mass transit systems with reliable stops and unreliable routes. The
overall reliability of such a system is the probability that each stop is served by
an operating route. Further examples include evaluating the reliability of flight
schedules for aircraft [BPS91] and determining the reliability of maintaining con-
tinuous surveillance of a critical point of a country’s border [Shi91]. As in [BPS91,
Shi91] we formulate reliability covering problems in terms of hypergraphs:

Definition 5.5.1 A hypergraph is a couple H = (V,E) where V is a finite set
and E is a set of non-empty subsets of V . The elements of V resp. E are the
vertices resp. edges of H . A covering of V is a subset X of E such that

⋃
X = V .

In case of a mass transit system, the vertices and edges of the hypergraph
correspond to the stops and routes of the system, respectively, while the coverings
correspond to those sets of routes such that each stop is served by a route.

Throughout, we assume that the vertices of the hypergraph are perfectly
reliable, whereas the edges are subject to random and independent failure. The
edge operation probabilities are assumed to be given by a vector p = (pE)E∈E ∈
[0, 1]E. The general objective is to determine or compute bounds on Cov(H ;p),
the probability that the vertex-set of H is covered by the operating edges of H .

Besides their practical applicability, reliability covering problems are also in-
teresting from a theoretical point of view. Namely, any coherent binary system
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gives rise to an equivalent reliability covering problem, and vice versa [BPS91,
Shi91]. In this way, the results of the preceding sections (including those on
network reliability) can be reformulated as reliability covering problems. One
direction of this equivalence is used in deriving the following results on reduced
hypergraphs, i.e., hypergraphs of type H = (V,E) where the sets E(v) := {E ∈
E | v ∈ E} (v ∈ V ) are all distinct. Note that restricting to reduced hypergraphs
does not cause any loss of generality, since by deleting vertices any hypergraph
H can be transformed efficiently into a reduced hypergraph R(H) such that
Cov(H ;p) = Cov(R(H);p). Now, using the above sets, the coverage probability
can be expressed as

(5.6) Cov(H ;p) = 1 − P


 ⋃

v∈V

⋂
E∈E(v)

{E fails}

 .

In connection with Theorem 4.1.11 the first part of the following theorem, which
is implicit in [Doh99b], yields improved inclusion-exclusion identities and Bonfer-
roni inequalities for the last term in (5.6) and thus for the coverage probability
Cov(H ;p). We do not mention the improved inclusion-exclusion identities explic-
itly, since they are an immediate consequence of the corresponding inequalities.
As in the preceding sections, we use C(V ) to denote the order complex of V .

Theorem 5.5.2 [Doh99b] Let H = (V,E) be a reduced hypergraph whose edges
fail randomly and independently and whose vertex-set is given the structure of a
lower semilattice such that the complement of each edge is infimum-closed. Then,({⋂

E∈E(v)
{E fails}

}
v∈V

,C(V )

)

is an abstract tube. In particular, for any p = (pE)E∈E ∈ [0, 1]E and any r ∈ N ,

Cov(H ;p) ≤
∑

I⊆V,|I|≤r
I is a chain

(−1)|I|
∏
E∈E

E∩I 6=∅

qE (r even),(5.7)

Cov(H ;p) ≥
∑

I⊆V,|I|≤r
I is a chain

(−1)|I|
∏
E∈E

E∩I 6=∅

qE (r odd),(5.8)

where qE = 1− pE for any E ∈ E.

Proof. Consider the coherent binary system Σ = (E, φ) where for any subset
X of E, φ(E \ X) = 0 if and only if X ⊇ E(v) for some v ∈ V . Clearly F :=
{E(v) | v ∈ V } is an extended set of mincuts of this system. Now, by defining
E(v) ≤ E(w) :⇔ v ≤ w for any v, w ∈ V , a partial ordering relation on F is
established, which satisfies E(v) ∧ E(w) = E(v ∧ w) for any v, w ∈ V . Since the
complement of each edge is infimum-closed, E(v∧w) ⊆ E(v)∪E(w) and therefore,
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E(v) ∧ E(w) ⊆ E(v) ∪ E(w) for any v, w ∈ V . Hence, the requirements of the
extended mincut version of Theorem 5.1.3 are satisfied, and thus the first part of
the theorem follows. The second part now follows from Theorem 4.1.11. 2

Remarks. Theorem 5.5.2 can easily be generalized to reduced hypergraphs with
statistically dependent edge failures: Simply replace the product in (5.7) and (5.8)
with the probability that all edges having a non-empty intersection with I fail.

Note that the requirements of Theorem 5.5.2 (as well as those of the next
theorem) are satisfied if H = ({1, . . . , n},E) where E ⊆ {{k, . . . , l} | 1 ≤ k ≤ l ≤
n} and n ∈ N . For an application of this type of hypergraph, see Shier [Shi91].

Theorem 5.5.3 [BPS91, Shi91] Let H = (V,E) be a reduced hypergraph whose
edges fail randomly and independently according to some vector q = (qE)E∈E of
edge failure probabilities and whose vertex-set is a lower semilattice such that each
edge is convex and the complement of each edge is infimum-closed. Then,

Cov(H ;p) = 1 −
∑
v∈V

Λ(v,q) ,(5.9)

where p = 1− q and where Λ is defined by the following recursive scheme:

Λ(v,q) :=
∏

E∈E(v)

qE −
∑
w<v

Λ(w,q)
∏

E∈E(v)
E/∈E(w)

qE .(5.10)

Proof. Theorem 5.5.3 follows from Theorem 5.1.7 in the same way as Theo-
rem 5.5.2 follows from Theorem 5.1.3. 2

Remark. In view of equations (5.9) and (5.10), Algorithm II can be adapted to
solve the reliability covering problem for the class of hypergraphs H = (V,E) sat-
isfying the requirements of Theorem 5.5.3. The resulting algorithm, which is due
to Ball, Provan and Shier [BPS91, Shi91], has a space complexity of O(|V |) and a
time complexity of O(|E| × |V |2), that is, its running time is bounded by a poly-
nomial in the number of vertices and edges of the hypergraph. Thus, under the
requirements of Theorem 5.5.3, the reliability covering problem can be solved in
polynomial time. In general, though, the reliability covering problem is #P -hard,
even when restricted to the class of hypergraphs whose vertices are the vertices
of a tree and whose edges are paths of length three in the tree [BPS91, Shi91].
However, if the vertices are the elements of a lower tree semilattice (that is, a
lower semilattice whose Hasse diagram is a tree) and the edges are of the form⋃

k{v ∈ V | xk ≤ v, yk 6≤ v} where xk ≤ yk and the xk’s are pairwise incom-
parable, then the requirements of Theorem 5.5.3 are satisfied and the reliability
covering problem can be solved in polynomial time [BPS91, Shi91].

We proceed with establishing a generalization of Theorem 5.5.2.
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Theorem 5.5.4 [Doh99b] Let H = (V,E) be a hypergraph whose edges fail ran-
domly and independently, and let c be a closure operator on V such that (V, c) is
a convex geometry and such that the complement of each edge is c-closed. Then,({⋂

E∈E(v)
{E fails}

}
v∈V

, Free(V, c)

)

is an abstract tube. In particular, for any p = (pE)E∈E ∈ [0, 1]E and any r ∈ N ,

Cov(H ;p) ≤
∑

I⊆V,|I|≤r
I is c-free

(−1)|I|
∏
E∈E

E∩I 6=∅

qE (r even),

Cov(H ;p) ≥
∑

I⊆V,|I|≤r
I is c-free

(−1)|I|
∏
E∈E

E∩I 6=∅

qE (r odd),

where qE = 1− pE for any E ∈ E.

Proof. We apply Theorem 4.2.1 with Av :=
⋂

E∈E(v){E fails} for any v ∈ V .

Evidently, the requirements of Theorem 4.2.1 are satisfied if
⋂

x∈X Ax ⊆ Av

for any non-empty subset X of V and any v ∈ c(X). A sufficient condition
for
⋂

x∈X Ax ⊆ Av is that all edges containing v have a non-empty intersection
with X. In order to show that this condition holds, assume that v ∈ E and
E ∩ X = ∅ for some edge E of the hypergraph. Then X would be a subset of
the complement E of E, and since all complements of edges are required to be
c-closed, we would also have c(X) ⊆ E and hence v ∈ E, contradicting v ∈ E.
Now, the first part of Theorem 5.5.4 follows from Theorem 4.2.1 and (5.6). The
second part is a direct consequence of the first part and Theorem 4.1.11. 2

As already mentioned above, the reliability covering problem is #P -hard, even
when restricted to the class of hypergraphs whose vertices are the vertices of a tree
and whose edges are paths of length three in the tree [BPS91, Shi91]. A careful
reading of the #P -hardness results in [BPS91, Shi91] reveals that the restricted
problem remains #P -hard even if the tree is part of the input. Considering com-
plements of paths instead of paths, or more generally, complements of subtrees
instead of paths, Theorem 5.5.4 gives rise to the following positive result:

Theorem 5.5.5 [Doh99b] For hypergraphs whose vertices are the vertices of a
tree and whose edges are complements of subtrees of the tree, the coverage prob-
ability can be computed in polynomial time from the hypergraph and the tree.

Proof. Let G = (V, T ) be a tree and H = (V,E) be a hypergraph where each
edge of H is the complement of a subtree of G. By combining Theorem 5.5.4
with Example 3.1.5 (or by applying Corollary 3.1.16) we obtain the formula

(5.11) Cov(H ;p) = 1 −
∑
v∈V

∏
E∈E(v)

qE +
∑

{v,w}∈T

∏
E∈E(v)∪E(w)

qE ,
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whose evaluation requires O(|V | · |E|) time. 2

An even more general result is the following. Recall from Section 2.1 that the
clique number of a graph G is the maximum cardinality of a clique in G.

Theorem 5.5.6 For hypergraphs whose vertices are those of a connected block
graph of bounded clique number and whose edges are complements of connected
subgraphs of the connected block graph, the coverage probability can be computed
in polynomial time from the hypergraph and the connected block graph.

Proof. Let G be a connected block graph having clique number at most d, and
let H = (V,E) be a hypergraph where each edge of H is the complement of a
connected subgraph of G. By applying Theorem 5.5.4 in connection with the
convex geometry of Example 3.1.6 we obtain the inclusion-exclusion formula

(5.12) Cov(H ;p) =
∑

I is a clique
of G

(−1)|I|
∏
E∈E

E∩I 6=∅

qE ,

whose evaluation requires O(|V |d · |E|) time, where d is a constant. 2

Remarks. The requirement that the connected block graph is of bounded clique
number is essential, since otherwise we could take for instance the complete graph
and thus reduce the problem to its unconstrained counterpart, which is #P -hard.
Anyway, as in the following example, we can take full advantage of the improved
Bonferroni inequalities associated with Theorem 5.5.4 and Example 3.1.6.

A generalization of (5.11) and (5.12) to statistically dependent edge failures
is straightforward and left as an option to the reader.

Example 5.5.7 Consider the hypergraph with vertices 1,2,3,4,5,6,7 and edges

{1, 2, 3, 4}, {4, 5, 6, 7}, {1, 6, 7}, {1, 3, 6}, {2, 3, 5, 7}, {2, 5, 6}, {2, 6, 7}, {1, 5, 7}.

Obviously, the edges of this hypergraph are complements of connected subgraphs
of the connected block graph displayed in Figure 5.14. Therefore, we can apply
Theorem 5.5.4 in connection with the convex geometry of Example 3.1.6 to obtain
improved Bonferroni bounds on the coverage probability Cov(H ;p) of this hy-
pergraph. Under the assumption that the edges of the hypergraph fail randomly
and independently with equal probability q = 1− p, the results are shown in Ta-
ble 5.9. Here, fr(q) resp. f ∗

r (q) denotes the rth classical resp. improved Bonferroni
bound, where even and odd values of r correspond to upper and lower bounds,
respectively. As in Example 5.2.1, the improved bounds are much sharper than
the classical bounds, although much fewer sets are taken into account. Table 5.10
shows some numerical values. Finally, some bounds are plotted in Figure 5.15.
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Figure 5.14: A connected block graph.
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Figure 5.15: A plot of some of the bounds in Table 5.9.
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c l a s s i c a l b o u n d s i m p r o v e d b o u n d s
r fr(q) # sets f∗

r (q) # sets

1 1− q2 − q3 − 3q4 − 2q5 8 1− q2 − q3 − 3q4 − 2q5 8
2 1− q2 − q3 − 2q4 + 3q5 + 5q6 + 10q7 29 1− q2 − q3 − 2q4 + 3q5 + 3q6 + 3q7 20
3 1− q2 − q3 − 2q4 + 3q5 + q6 − 5q7 − 16q8 64 1− q2 − q3 − 2q4 + 3q5 + q6 − 3q8 28
4 1− q2 − q3 − 2q4 + 3q5 + q6 + 14q8 99 1− q2 − q3 − 2q4 + 3q5 + q6 − q8 30
5 1− q2 − q3 − 2q4 + 3q5 + q6 − 7q8 120
6 1− q2 − q3 − 2q4 + 3q5 + q6 127
7 1− q2 − q3 − 2q4 + 3q5 + q6 − q8 128

Table 5.9: Bonferroni bounds for the coverage probability of the hypergraph in Example 5.5.7.

q f3(q) f∗
3 (q) f∗

4 (q)† f4(q) f∗
2 (q) f2(q)

0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.1 0.98883 0.98883 0.98883 0.98883 0.98883 0.98884
0.2 0.94972 0.94982 0.94982 0.94986 0.94999 0.95021
0.3 0.87268 0.87462 0.87475 0.87574 0.87693 0.87992
0.4 0.74094 0.75765 0.75896 0.76879 0.77272 0.79238
0.5 0.50781 0.59766 0.60547 0.66406 0.66406 0.75000
0.6 0.03603 0.39435 0.42794 0.67988 0.62203 0.91130
0.7 -1.02548 0.13572 0.25101 1.11573 0.79102 1.60280

†exact coverage probability

Table 5.10: Numerical values of the bounds in Table 5.9.



Chapter 6

Miscellaneous Topics

This chapter is devoted to some classical topics of enumerative combinatorics. In
the first section we identify an abstract tube associated with partition lattices of
finite sets. Then, in the second section we apply our inclusion-exclusion results
to the chromatic polynomial of a graph and thus deduce Whitney’s broken cir-
cuit theorem [Whi32] as well as several of its generalizations. In the remaining
sections similar conclusions are drawn for the Tutte polynomial, the character-
istic polynomial and the β invariant of a matroid, the Euler characteristic of an
abstract simplicial complex and the Möbius function of a partially ordered set.
In particular, we rediscover a recent generalization of Rota’s crosscut theorem
[Rot64] due to Blass and Sagan [BS97] and obtain a new proof of a classical
theorem due to Weisner [Wei35]. A key role in proving these results is due to
Theorem 3.2.4 and its forthcoming generalization to partially ordered sets.

6.1 Inclusion-exclusion on partition lattices

In this section, we establish an abstract tube generalization of Narushima’s prin-
ciple of inclusion-exclusion on partition lattices [Nar74, Nar77], which turned out
as a very useful tool in the enumeration of reduced finite automata [Nar77].

Definition 6.1.1 Let S be a set. A partition of S is a set of non-empty and
pairwise disjoint subsets of S whose union is S. Each element of the partition is
referred to as a block of the partition. The set Π(S) of all partitions of S is given
the structure of a lattice by defining for any π, τ ∈ Π(S),

π ≤ τ :⇔ each block of π is included in a block of τ .

For s, s′ ∈ S we write sπs′ if s and s′ belong to the same block of π. Thus, π ≤ τ
if and only if for any s, s′ ∈ S, sπs′ implies sτs′. For any sets S and T , the
cartesian product Π(S)×Π(T ) is given the structure of a lattice by definition of

(π1, τ1) ≤ (π2, τ2) :⇔ π1 ≤ π2 and τ1 ≤ τ2

88
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for any (π1, τ1), (π2, τ2) ∈ Π(S)× Π(T ).

The following definitions are non-standard and differ from those of Narushima
[Nar74, Nar77], who prefers to use the terminology of Galois correspondences.

Definition 6.1.2 A partitioned set is a pair (S, π), consisting of a set S and
a partition π of S. Given two partitioned sets (S, π) and (T, τ), a mapping
f : S → T is called a homomorphism from (S, π) to (T, τ) if for any s, s′ ∈ S,
sπs′ implies f(s)τf(s′). A homomorphism from (S, π) to itself is also referred to
as an endomorphism of (S, π). For abbreviation, we write f : (S, π) → (T, τ) if
f is a homomorphism from (S, π) to (T, τ), and define

Hom((S, π), (T, τ)) := {f | f : (S, π)→ (T, τ)} ,

End(S, π) := Hom((S, π), (S, π)) .

Our abstract tube generalization of Narushima’s principle of inclusion-ex-
clusion on partition lattices [Nar74, Nar77] follows. The improved inclusion-
exclusion identity associated with this abstract tube is of course due to Narushima
[Nar74, Nar77], whereas the associated improved Bonferroni inequalities are new.

Theorem 6.1.3 [Dohb] Let S and T be finite sets, and let L be a subsemilattice
of Π(S)×Π(T ). Then,

({Hom((S, π), (T, τ))}(π,τ)∈L,C(L)
)

is an abstract tube.

Proof. It is easy to verify (cf. [Nar74, Nar77]) that for any (π, τ), (π′, τ ′) ∈ L,

Hom((S, π), (T, τ)) ∩Hom((S, π′), (T, τ ′)) ⊆ Hom((S, π ∧ π′), (T, τ ∧ τ ′)) ,

Hom((S, π), (T, τ)) ∩Hom((S, π′), (T, τ ′)) ⊆ Hom((S, π ∨ π′), (T, τ ∨ τ ′)) ,

where ∧ and ∨ stand for the infimum (greatest lower bound) and supremum (least
upper bound) in Π(S) and Π(T ). By Corollary 4.2.13, the result follows. 2

Corollary 6.1.4 [Dohb] Let S be a finite set, and let L be a subsemilattice of
Π(S). Then, ({End(S, π)}π∈L,C(L)) is an abstract tube.

Proof. Since π 7→ (π, π) is a lattice isomorphism from Π(S) to Π(S) × Π(S),
Corollary 6.1.4 follows from Theorem 6.1.3 by considering the case S = T . 2

6.2 Chromatic polynomials of graphs

The chromatic polynomial of a graph is a fundamental concept in enumerative
combinatorics and chromatic graph theory. It expresses the number of vertex-
colorings of a graph in at most λ colors such that no adjacent vertices receive the
same color. The chromatic polynomial was first considered by Birkhoff [Bir12] in
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connection with the four color problem. Since its computation is #P -complete in
general [Val79, Wel93], lower bounds and upper bounds are of great value. Some
authors [Bye98, Laz90] justify the seeking of bounds by the analysis of Wilf’s
backtracking algorithm for the graph coloring problem [Wil84, Wil86, BW85].

One of the most important results on the chromatic polynomial is Whitney’s
broken circuit theorem [Whi32], which relates the coefficients of the chromatic
polynomial to the face count numbers of an abstract simplicial complex. Based
on our inclusion-exclusion results, we give a new and strongly simplified proof
of Whitney’s theorem and establish an abstract tube generalization of it. In
this way, new Bonferroni inequalities for the chromatic polynomial are obtained
that involve the face count numbers of the associated abstract simplicial complex.
Finally, a new two-variable generalization of the chromatic polynomial is proposed
as well as a corresponding generalization of the results obtained so far.

Definition 6.2.1 Let G be a graph and λ ∈ N . A λ-coloring of G is a mapping
f from the vertex-set of G into {1, . . . , λ}. A λ-coloring f of G is proper if
f(v) 6= f(w) for each edge {v, w} of G. We use PG(λ) to denote the number of
proper λ-colorings of G and refer to PG(λ) as the chromatic polynomial of G.

Remark. The preceding definition is justified by a result of Birkhoff [Bir12], who
showed that PG(λ) is a monic polynomial in λ of degree n(G) with integer coeffi-
cients. Historically, the definition of the chromatic polynomial was motivated by
the four color problem, which asks whether PG(4) > 0 for any planar graph G.

To state Whitney’s broken circuit theorem, a further definition is needed:

Definition 6.2.2 Let G be a graph whose edge-set is endowed with a linear
ordering relation. A broken circuit of G is obtained from the edge-set of a cycle of
G by removing its maximum edge. The broken circuit complex of G, abbreviated
to BC(G), is the abstract simplicial complex consisting of all non-empty subsets
of the edge-set of G that do not include any broken circuit of G as a subset.

The definition of a broken circuit goes back to Whitney [Whi32], while the bro-
ken circuit complex was initiated by Wilf [Wil76] (see also [Bry77, BO81, BZ91]).

Example 6.2.3 Consider the graph in Figure 6.1, whose edge-set is linearly
ordered according to the labelling of the edges. Obviously, the broken circuits
are {1, 2}, {1, 2, 4} and {3, 4}, whence the broken circuit complex is equal to

{{1}, {2}, {3}, {4}, {5}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4},
{2, 5}, {3, 5}, {4, 5}, {1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5}}.
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Figure 6.1: A graph with labelled edges.

In the following, we restate and reprove Whitney’s famous broken circuit
theorem [Whi32]. The reader is invited to compare our proof with the original
proof of Whitney [Whi32] or with the bijective proof of Blass and Sagan [BS86].

Theorem 6.2.4 [Whi32] Let G be a graph whose edge-set is endowed with a
linear ordering relation. Then, for any λ ∈ N ,

PG(λ) =

n(G)∑
k=0

(−1)k bk(G) λn(G)−k ,(6.1)

where b0(G) = 1 and bk(G), k > 0, counts the faces of cardinality k (dimension
k − 1) in BC(G).

Proof. Define X as the set of broken circuits of G, and for any edge e of G define

Ae := {f : V (G)→ {1, . . . , λ} | f(v) = f(w)} , e = {v, w}.

Then, the requirements of Theorem 3.2.8 are satisfied, and thus we obtain

(6.2) PG(λ) = λn(G) −
∣∣∣∣∣∣
⋃

e∈E(G)

Ae

∣∣∣∣∣∣ = λn(G) +
∑
k>0

(−1)k
∑

I∈BC(G)
|I|=k

∣∣∣∣∣
⋂
i∈I

Ai

∣∣∣∣∣ .

Since the edge-subgraph G[I] is cycle-free for any I ∈ BC(G), it follows that

m(G[I])− n(G[I]) + c(G[I]) = 0(6.3)

and hence, ∣∣∣∣∣
⋂
i∈I

Ai

∣∣∣∣∣ = λn(G)−n(G[I])λc(G[I]) = λn(G)−m(G[I]) = λn(G)−|I| .
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Putting this into (6.2) and collecting powers of λ, the theorem follows. 2

Remark. As a consequence of Theorem 6.2.4, 1 + |BC(G)| = |PG(−1)|. By a
celebrated result of Stanley [Sta73] the latter quantity coincides with the number
of acyclic orientations of G where, by definition, an acyclic orientation of G is
an acyclic digraph that can be obtained from G by directing the edges of G.

We now restate and generalize Whitney’s broken circuit theorem in terms of
abstract tubes, which leads to improved Bonferroni inequalities on the chromatic
polynomial. These inequalities become an identity if r ≥ dimBC(G) + 1. Since
n(G) ≥ dimBC(G) + 1, we thus rediscover Whitney’s broken circuit theorem.

Theorem 6.2.5 [Doh99d] Let G be a graph whose edge-set is endowed with a
linear ordering relation. Then, for any λ ∈ N ,({{f : V (G)→ {1, . . . , λ} | f(v) = f(w)}}{v,w}∈E(G)

, BC(G)
)

is an abstract tube, and for any r ∈ N the following inequalities hold:

PG(λ) ≥
r∑

k=0

(−1)k bk(G) λn(G)−k (r odd),

PG(λ) ≤
r∑

k=0

(−1)k bk(G) λn(G)−k (r even),

where b0(G) = 1 and bk(G), k > 0, counts the faces of cardinality k (dimension
k − 1) in BC(G).

Proof. Define X and Ae as in the proof of Theorem 6.2.4. Then, the first part of
Theorem 6.2.5 is an immediate consequence of Theorem 4.2.11. The second part
follows from the first one by combining it with Theorem 4.1.11. Thus, one gets

PG(λ) ≥ λn(G) +

r∑
k=1

(−1)k
∑

I∈BC(G)
|I|=k

∣∣∣∣∣
⋂
i∈I

Ai

∣∣∣∣∣ (r odd),

PG(λ) ≤ λn(G) +
r∑

k=1

(−1)k
∑

I∈BC(G)
|I|=k

∣∣∣∣∣
⋂
i∈I

Ai

∣∣∣∣∣ (r even).

Now, the same arguments as in the proof of Theorem 6.2.4 apply. 2

Remarks. The first part of Theorem 6.2.5 can be generalized to hypergraphs
where each cycle has an edge of cardinality two; see [Doh95a] for a proof of
the corresponding identity and [Doh00d] for a generalization of this identity with
regard to the number of precoloring extensions of the hypergraph. Further sources
on chromatic polynomials of hypergraphs are [Tom98] and [Doh93a, Doh95b].
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A restatement and alternative proof of the second part of Theorem 6.2.5
(without supplying an interpretation of the coefficients) is given subsequently.

Theorem 6.2.6 [Doh99e] Let G be a graph. Then, for any λ ∈ N and r ∈ N ,

PG(λ) ≥
r∑

k=0

(−1)k bk(G) λn(G)−k (r odd),(6.4)

PG(λ) ≤
r∑

k=0

(−1)k bk(G) λn(G)−k (r even),(6.5)

where (−1)kbk(G) denotes the coefficient of λn(G)−k in PG(λ) (k = 0, . . . , n(G)).

Proof. We proceed by induction on m(G). If m(G) = 0, then PG(λ) = λn(G) and
the statement holds. Now let G have at least one edge e, and assume that the
statement is true for graphs having fewer edges. Let G− e resp. G/e denote the
graph obtained from G by deleting resp. contracting e and then, in the resulting
multigraph, replacing each class of parallel edges by a single edge. Note that
n(G) = n(G− e) = n(G/e) + 1. By the deletion-contraction formula [Rea67],

(6.6) PG(λ) = PG−e(λ)− PG/e(λ)

and consequently,

(6.7) bk(G) = bk(G− e) + bk−1(G/e) (k = 1, . . . , n(G)).

The induction hypothesis applied to G− e and G/e gives

PG−e(λ) ≤
r∑

k=0

(−1)k bk(G− e) λn(G−e)−k =

r∑
k=0

(−1)k bk(G− e) λn(G)−k ,

PG/e(λ) ≥
r−1∑
k=0

(−1)k bk(G/e) λn(G/e)−k =

r∑
k=1

(−1)k−1 bk−1(G/e) λn(G)−k ,

in the case where r is even. From this and (6.6) we conclude that

PG(λ) ≤ λn(G) +
r∑

k=1

(−1)k (bk(G− e) + bk−1(G/e)) λn(G)−k .

Now apply (6.7). The case where r is odd is treated in a similar way. 2

Remark. In [Doh99e] some prior bounds for PG(λ) due to the author [Doh93b] are
derived from (6.4) and (6.5), which only depend on the girth and the number of
vertices and edges of G. Improvements and generalizations of these bounds and
a bound due to Lazebnik [Laz90] are established in [Doh95b, Doh96, Doh98a];
see also Byer [Bye96, Bye98] for a discussion and further references.

As a corollary we obtain that in absolute value each coefficient of the chromatic
polynomial is at most the sum of the coefficients of its neighbours:
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Corollary 6.2.7 Let the chromatic polynomial of G be given by (6.1). Then,

bk(G) ≤ bk−1(G) + bk+1(G) (k = 1, . . . , n(G)− 1).

Proof. We only consider the case where k is odd. Then, by applying Theo-
rem 6.2.5 or Theorem 6.2.6 with λ = 1 and r = k − 2 resp. r = k + 1 we get

k−2∑
i=0

(−1)i bi(G) ≤
k+1∑
i=0

(−1)i bi(G) ,

which implies the result. 2

We close this section with a new two-variable generalization of the chromatic
polynomial and an associated generalization of Theorem 6.2.5.

Definition 6.2.8 Let G be a graph. For any λ ∈ N and µ ∈ {0, . . . , λ}, we use
PG(λ, µ) to denote the number of all mappings f from the vertex-set of G into
{1, . . . , λ} such that f(v) 6= f(w) or f(v) = f(w) > µ for each edge {v, w} of G.

Remark. Evidently, PG(λ, 0) = λn(G) and PG(λ, λ) = PG(λ). Moreover, PG(2, 1)
gives the number of independent sets of G. Recall that a subset W ⊆ V (G) is an
independent set of G if the vertex-induced subgraph G[W ] has no edges.

Theorem 6.2.9 Let G be a graph whose edge-set is endowed with a linear or-
dering relation, and let λ ∈ N and µ ∈ {0, . . . , λ}. Then({{f : V (G)→ {1, . . . , λ} | f(v) = f(w) ≤ µ}}{v,w}∈E(G)

, BC(G)
)

is an abstract tube, and for any r ∈ N the following inequalities hold:

PG(λ, µ) ≥
r∑

k=0

k∑
l=0

(−1)k bk,l(G) λn(G)−k−lµl (r odd),

PG(λ, µ) ≤
r∑

k=0

k∑
l=0

(−1)k bk,l(G) λn(G)−k−lµl (r even),

where b0,0(G) = 1 and bk,l(G), k > 0, counts all faces I of cardinality k (dimension
k − 1) in BC(G) such that the edge-subgraph G[I] has l connected components.

Proof. Define X as the set of broken circuits of G, and for any edge e of G define

Ae := {f : V (G)→ {1, . . . , λ} | f(v) = f(w) ≤ µ} , e = {v, w}.
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As in the proof of Theorem 6.2.5, the first part is an immediate consequence of
Theorem 4.2.11. In combination with Theorem 4.1.11 the first part gives

PG(λ, µ) ≥ λn(G) +

r∑
k=1

(−1)k
∑

I∈BC(G)
|I|=k

∣∣∣∣∣
⋂
i∈I

Ai

∣∣∣∣∣ (r odd),(6.8)

PG(λ, µ) ≤ λn(G) +
r∑

k=1

(−1)k
∑

I∈BC(G)
|I|=k

∣∣∣∣∣
⋂
i∈I

Ai

∣∣∣∣∣ (r even).(6.9)

Since G[I] is cycle-free for any I ∈ BC(G), we again have (6.3) and hence,∣∣∣∣∣
⋂
i∈I

Ai

∣∣∣∣∣ = λn(G)−n(G[I])µc(G[I]) = λn(G)−m(G[I])−c(G[I])µc(G[I]) .

Putting this into (6.8) and (6.9) and taking account of c(G[I]) ≤ m(G[I]) = |I|,
we complete the proof. 2

Corollary 6.2.10 Let G be a graph whose edge-set is endowed with a linear
ordering relation. Then, for any λ ∈ N and any µ ∈ {0, . . . , λ},

(6.10) PG(λ, µ) =

m(G)∑
k=0

k∑
l=0

(−1)k bk,l(G) λn(G)−k−lµl ,

where b0,0(G) = 1 and bk,l(G), k > 0, counts all faces I of cardinality k (dimension
k − 1) in BC(G) such that the edge-subgraph G[I] has l connected components.

Proof. Corollary 6.2.10 is an immediate consequence of Theorem 6.2.9. 2

Remarks. Note that the preceding equation (6.10) can equivalently be stated as

PG(λ, µ) = λn(G) Q
(
G; −λ−1, µλ−1

)
,

where Q is defined by

Q(G; x, y) =
∑
k,l

bk,l(G) xk yl .

Thus, Q(G; −λ−1, µλ−1) expresses the probability that a λ-coloring of G, which
is chosen uniformly at random, is admissible in the sense of Definition 6.2.8.

Statements on the number of independent sets are obtained from the preceding
results by putting λ = 2 and µ = 1. The corresponding abstract tube is({{W |W ⊆ V (G), e ⊆ W}}

e∈E(G)
,BC(G)

)
.
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We further remark that non-isomorphic trees on the same number of vertices
may have different polynomials in λ and µ. This contrasts the situation for the
usual chromatic polynomial, which equals λ(λ− 1)n−1 for all trees on n vertices.
Consider for instance a path G and a star G′, both on four vertices. Then,

b0,0(G) = 1, b2,2(G) = 1, b0,0(G
′) = 1, b2,2(G

′) = 0,

b1,0(G) = 0, b3,0(G) = 0, b1,0(G
′) = 0, b3,0(G

′) = 0,

b1,1(G) = 3, b3,1(G) = 1, b1,1(G
′) = 3, b3,1(G

′) = 1,

b2,0(G) = 0, b3,2(G) = 0, b2,0(G
′) = 0, b3,2(G

′) = 0,

b2,1(G) = 2, b3,3(G) = 0, b2,1(G
′) = 3, b3,3(G

′) = 0.

Putting these values into (6.10) we obtain

PG(λ, µ) = λ4 − 3λ2µ + 2λµ + µ2 − µ,

PG′(λ, µ) = λ4 − 3λ2µ + 3λµ− µ.

Evidently, these two polynomials differ unless µ = λ or µ = 0. As a consequence,
the generalized chromatic polynomial PG(λ, µ) is not an evaluation of the Tutte
polynomial [Tut47, Tut54], which is the same for all trees on a given number of
vertices. We shall be concerned with the Tutte polynomial in the next section.

Very recently, Tittmann [Tit] showed that the generalized chromatic poly-
nomial of a tree can be computed in polynomial time, and he also gave general
formulae for complete graphs, complete bipartite graphs, paths and cycles. These
formulae are much more complicated than their counterparts for the usual chro-
matic polynomial. For instance, if Pn denotes the path on n vertices, then

PPn(λ, µ) = λn +
n∑

k=0

bn−k
2

c∑
l=1

(−1)n+k+l

(
k + l

k

)(
n− k − l − 1

l − 1

)
λkµl .

Tittmann [Tit] also observed that

(6.11) PG(λ + 1, 1) =

n(G)∑
k=0

αk(G)λn(G)−k

where αk(G) denotes the number of independent sets of cardinality k in G. The
polynomial on the right-hand side of (6.11) is known as the independence poly-
nomial of G. Thus, our new two-variable polynomial PG(λ, µ) generalizes both
the chromatic polynomial and the independence polynomial.

The results on the new two-variable polynomial will appear in a joint paper
by Dohmen and Tittmann [DT].
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6.3 Matroid polynomials and the β invariant

Similar results as for the chromatic polynomial of a graph can be devised for the
Tutte polynomial, the characteristic polynomial and the β invariant of a matroid.
To this end, we briefly review some basic notions and facts of matroid theory.
For a detailed exposition, the reader is referred to the textbook of Welsh [Wel76].

Definition 6.3.1 A matroid is a pair M = (E, r) consisting of a finite set E
and a Z-valued function r on the power set of E such that for any A, B ⊆ E,

(i) 0 ≤ r(A) ≤ |A|,
(ii) A ⊆ B ⇒ r(A) ≤ r(B),

(iii) r(A ∪ B) + r(A ∩B) ≤ r(A) + r(B).

Example 6.3.2 If G is a graph and r(I) = n(G[I])− c(G[I]) for any I ⊆ E(G),
then M(G) := (E(G), r) is a matroid, which is called the cycle matroid of G.

Definition 6.3.3 The Tutte polynomial T (M ; a, b) of a matroid M = (E, r) is
defined by

T (M ; a, b) :=
∑
I⊆E

(a− 1)r(E)−r(I)(b− 1)|I|−r(I) ,

where a and b are independent variables.

Specializations of the Tutte polynomial T (M(G); a, b) count various objects
associated with a graph G, e.g., subgraphs, spanning trees, acyclic orientations
and proper λ-colorings. It is also related to the all-terminal reliability R(G).
Namely, if G is a connected graph whose nodes are perfectly reliable and whose
edges fail randomly and independently with equal probability q = 1− p, then

R(G) = qm(G)−n(G)+1 pn(G)+1 T (M(G); 1, q−1) .

For further applications of the Tutte polynomial, we refer to [BO92, Wel93].

Definition 6.3.4 For any matroid M = (E, r) and any subset X of E, the
contraction of X from M is given by M/X := (E \ X, rX) where rX(I) :=
r(X ∪ I)− r(X) for any I ⊆ E \X.

Our result on the Tutte polynomial is stated below. An equivalent formulation
using union-closed sets instead of kernel operators is left to the reader.

Theorem 6.3.5 [Doh99f] Let M = (E, r) be a matroid, k a kernel operator on
E and a, b ∈ C such that T (M/X; a, b) = 0 for any k-open X ∈ P∗(E). Then,

T (M ; a, b) =
∑

I : k(I)=∅
(a− 1)r(E)−r(I)(b− 1)|I|−r(I) .
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Proof. For any X ⊆ E define f(X) :=
∑

I⊇X(a− 1)r(E)−r(I)(b− 1)|I|−r(I). Then,
by Theorem 3.2.4, it suffices to prove that f(X) = 0 for any non-empty and
k-open subset X of E. With X denoting the complement of X in E we obtain

f(X) =
∑
I⊆X

(a− 1)r(E)−r(X∪I)(b− 1)|X∪I|−r(X∪I)

= (a− 1)r(E)−r(X)−rX(X)(b− 1)|X|−r(X)
∑
I⊆X

(a− 1)rX(X)−rX(I)(b− 1)|I|−rX(I)

= (a− 1)r(E)−r(X)−rX(X)(b− 1)|X|−r(X) T (M/X; a, b) = 0 . 2

From Theorem 6.3.5 we subsequently deduce Heron’s broken circuit theorem
[Her72], which generalizes Whitney’s broken circuit theorem [Whi32] from chro-
matic polynomials of graphs to characteristic polynomials of matroids.

Definition 6.3.6 The characteristic polynomial C(M ; λ) of a matroid M =
(E, r) is defined by

C(M ; λ) := (−1)r(E) T (M ; 1− λ, 0) =
∑
I⊆E

(−1)|I| λr(E)−r(I) .(6.12)

A circuit of a matroid M = (E, r) is set C ∈ P∗(E) such that r(C\{c}) = |C|−1 =
r(C) for any c ∈ C. A loop is a circuit of cardinality 1. If E is linearly ordered
and C a circuit of M , then C \ {max C} is referred to as a broken circuit of M .

Remark. By the classical inclusion-exclusion principle, the chromatic polynomial
of a graph G is related to the characteristic polynomial of M(G) by

PG(λ) = λc(G) C(M(G); λ) .

We are now ready to state Heron’s broken circuit theorem [Her72].

Corollary 6.3.7 [Her72] Let M = (E, r) be a matroid, where E is endowed with
a linear ordering relation. Then,

C(M ; λ) =

r(E)∑
k=0

(−1)k bk(M) λr(E)−k

where bk(M) is the number of k-subsets of E which do not include a broken circuit
of M as a subset. In particular, the coefficients of C(M ; λ) alternate in sign.
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Proof. [Doh00e] It is easy to see (cf. Lemma 1.4 of [Her72]) that, in general,

(6.13) C(M ; λ) = 0 if M contains a loop.

For any X ⊆ E define k(X) :=
⋃{C ⊆ X |C is a broken circuit of M}. Then,

for any non-empty and k-open subset X of E there is some e > max X such that
X ∪ {e} includes a circuit of M . Therefore, r(X ∪ {e}) = r(X), or equivalently,
rX({e}) = 0. From this we conclude that e is a loop of M/X and hence by (6.13),
C(M/X; λ) = 0. By applying Theorem 6.3.5, using identity (6.12) and utilizing
the fact that r(I) = |I| for any I including no broken circuit of M , we obtain

C(M ; λ) =
∑
I⊆E

I 6⊇X(∀X∈X)

(−1)|I|λr(E)−|I| ,

where X is the set of broken circuits of M . 2

Results similar to Theorem 6.3.5 and Corollary 6.3.7 can also be established
for Crapo’s β invariant [Cra67], which among other things indicates whether M
is connected and whether M is the cycle matroid of a series-parallel network.

Definition 6.3.8 The β invariant of a matroid M = (E, r) is defined by

(6.14) β(M) := (−1)r(E)
∑
I⊆E

(−1)|I| r(I) .

A matroid M = (E, r) is called disconnected if there is a pair of distinct elements
of E that are not jointly contained by a circuit of M .

Our result on the β invariant is given below. Again, an equivalent formulation
using union-closed sets instead of kernel operators is left to the reader.

Theorem 6.3.9 [Doh99f] Let M = (E, r) be a matroid, and let k be a kernel
operator on E such that E is not k-open and M/X is disconnected or a loop for
any non-empty and k-open subset X of E. Then,

β(M) = (−1)r(E)
∑

I : k(I)=∅
(−1)|I| r(I) .

Proof. By Lemma II of Crapo [Cra67], β(M) = 0 if M is disconnected or a loop.
By this and the assumptions, β(M/X) = 0 for any non-empty, k-open subset X
of E. By Theorem 3.2.4 it suffices to prove that f(X) = 0 for each such X, where
f(X) :=

∑
I⊇X(−1)|I|r(I). Since the assumptions entrain X 6= ∅, we obtain

f(X) =
∑
I⊆X

(−1)|X∪I|r(X ∪ I)
.
=
∑
I⊆X

(−1)|I| (rX(I) + r(X))
.
= β(M/X) = 0 ,

where
.
= means equality up to sign. 2

The following result is well known:
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Corollary 6.3.10 Let M = (E, r) be a matroid, where E is endowed with a
linear ordering relation. Then,

β(M) = (−1)r(E)

|E|∑
k=1

(−1)k k bk(M)

where again bk(M) is the number of k-subsets of E including no broken circuit.

Proof. Corollary 6.3.10 follows from Theorem 6.3.9 in nearly the same way as
Corollary 6.3.7 follows from Theorem 6.3.5. Alternatively, consider the identity

β(M) = (−1)r(E)−1 ∂C(M ; λ)

∂λ

∣∣∣∣
λ=1

for E 6= ∅ and apply Corollary 6.3.7. For E = ∅ the statement is obvious. 2

6.4 Euler characteristics and Möbius functions

In this last section we establish some results on the Euler characteristic of an ab-
stract simplicial complex and the Möbius function of a partially ordered set. Our
first result concerns the Euler characteristic and requires the following definition:

Definition 6.4.1 For any abstract simplicial complex S and any simplex X ∈ S
the link S/X is the abstract simplicial complex defined by

S/X := {I ∈ S | I ∩X = ∅, I ∪X ∈ S} .

Theorem 6.4.2 Let k be a kernel operator on the vertex-set of an abstract sim-
plicial complex S such that γ(S/X) = 1 for any k-open simplex X ∈ S. Then,

γ(S) = γ ({I ∈ S | k(I) = ∅}) .

Proof. Let S+ := S ∪ {∅}, and for any subset X of the vertex-set of S define

f(X) :=
∑
Y ⊇X

g(Y ), where g(Y ) :=

{
(−1)|Y |−1 if Y ∈ S+,

0 otherwise.

Then, f(X) = 0 for any non-empty X ⊆ Vert(S) which is not a simplex of S, and

f(X) = (−1)|X|−1 +
∑
Y ∈S
Y ⊃X

(−1)|Y |−1 = (−1)|X|−1 + (−1)|X| γ(S/X) = 0
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for any k-open simplex X ∈ S. Hence, by applying Theorem 3.2.4,∑
I∈S+

(−1)|I|−1 =
∑
I∈S+
k(I)=∅

(−1)|I|−1 .

Now, by subtracting the term for I = ∅ from both sides the result follows. 2

By applying Theorem 6.4.2 with S = P∗(Vω) one obtains yet another proof of
Theorem 3.2.5. We omit the details and pose the following conjecture. For the
notion of homotopy equivalence we refer to the textbook of Harzheim [Har78].

Conjecture 6.4.3 Let k be a kernel operator on the vertex-set of an abstract
simplicial complex S such that S/X is contractible for any k-open simplex X ∈ S.
Then, the complexes S and {I ∈ S | k(I) = ∅} are homotopy equivalent.

The following terminologies are adopted from Rota [Rot64].

Definition 6.4.4 Let L = [0̂, 1̂] be a finite lattice. L is called non-trivial if
L \ {0̂, 1̂} 6= ∅. An element a ∈ L is an atom of L if a > 0̂ and no a′ ∈ L satisfies
a > a′ > 0̂. The set of atoms of L is denoted by A(L). A crosscut of L is an
antichain C ⊆ L\{0̂, 1̂} having a non-empty intersection with any maximal chain
from 0̂ to 1̂ in L. The crosscut complex of L associated with C is defined by

Γ(L, C) :=
{
I ∈ P∗(C)

∣∣∧ I > 0̂ or
∨

I < 1̂
}

and is easily seen to be an abstract simplicial complex. For any abstract simplicial
complex S, we refer to γ̃(S) := γ(S)− 1 as the reduced Euler characteristic of S.

Example 6.4.5 A(L) is a crosscut for any non-trivial finite lattice L.

The following proposition, which is stated without proof, is known as Rota’s
crosscut theorem [Rot64]. A proof of Rota’s crosscut theorem can also be found
in the textbook of Aigner [Aig79]. In the following, we write µ(L) instead of
µL(1̂), where µL denotes the Möbius function of L (see Definition 5.1.13).

Proposition 6.4.6 [Rot64] Let L = [0̂, 1̂] be a non-trivial finite lattice, and let
C be a crosscut of L. Then, µ(L) equals the reduced Euler characteristic of the
crosscut complex of L associated with C, or equivalently,

(6.15) µ(L) =
∑

I∈P∗(C)
V

I=0̂,
W

I=1̂

(−1)|I| .

Example 6.4.7 Let L be the lattice shown in Figure 6.2. Evidently, C =
{a, b, c, d, e} is a crosscut of L. The associated crosscut complex Γ(L, C) equals

{{a}, {b}, {c}, {d}, {e}, {a, b}, {a, c}, {a, d}, {b, c},
{b, d}, {b, e}, {c, d}, {c, e}, {d, e}, {a, b, c}, {a, b, d}, {a, c, d},

{b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}, {a, b, c, d}, {b, c, d, e}}
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and contains 23 simplices each of which contributes to the reduced Euler charac-
teristic γ̃(Γ(L, C)) = µ(L). Alternatively, we can compute µ(L) via (6.15), which
gives a sum involving only eight terms. Anyway, it turns out that µ(L) = 0.

a b c d e

0

1

Figure 6.2: A lattice with crosscut {a, b, c, d, e}.

The following theorem shows that under reasonable assumptions µ(L) may be
considered as the reduced Euler characteristic of a subcomplex of Γ(L, C). The
theorem may be viewed as an extension of Rota’s crosscut theorem [Rot64] and
as a generalization of a recent result of Blass and Sagan [BS97].

Theorem 6.4.8 Let L = [0̂, 1̂] be a non-trivial finite lattice, and let C be a
crosscut of L, which is endowed with a partial order which is denoted by E to
distinguish it from the partial order ≤ in L. Furthermore, let k be a kernel
operator on C such that for any non-empty and k-open subset X of C and any
x ∈ X there is some c ∈ C satisfying c C x and

∧
X < c <

∨
X. Then,

µ(L) = γ̃ ({I ∈ Γ(L, C) | k(I) = ∅})(6.16)

or equivalently,

µ(L) =
∑

I∈P∗(C)
V

I=0̂,
W

I=1̂
k(I)=∅

(−1)|I| .(6.17)
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Proof. By Theorem 6.4.2 and Proposition 6.4.6, (6.16) is proved if

(6.18) γ (Γ(L, C)/X) = 1

for any k-open simplex X ∈ Γ(L, C). We first observe that

(6.19) Γ(L, C)/X =
{
I ∈ P∗(C \X)

∣∣∧(I ∪X) > 0̂ or
∨

(I ∪X) < 1̂
}

.

Now, let cX be E-minimal in {c ∈ C | ∧X < c <
∨

X}. Then, cX /∈ X since
otherwise c C cX and

∧
X < c <

∨
X for some c ∈ C, contradicting the

minimality of cX . Now, by (6.19) and since
∧

X < cX <
∨

X and cX /∈ X, it
follows that Y 7→ Y M {cX} is a sign-reversing involution on Γ(L, C)/X ∪ {∅},
whence (6.18) and thus (6.16) is shown. To establish (6.17) we first note that

γ̃({I∈Γ(L, C)|k(I) = ∅}) = γ̃({I∈P∗(C)|k(I) = ∅}) +
∑

I∈P∗(C)
V

I=0̂,
W

I=1̂
k(I)=∅

(−1)|I|.(6.20)

The assumptions of the theorem imply that C is not k-open, whence S = P∗(C)
satisfies the requirements of Theorem 6.4.2. Thus, by applying Theorem 6.4.2,

γ̃({I ∈ P∗(C) | k(I) = ∅}) = γ̃(P∗(C)) = 0 .(6.21)

In view of (6.20) and (6.21) the equivalence of (6.16) and (6.17) is obvious. 2

Corollary 6.4.9 Let L = [0̂, 1̂] be a non-trivial finite lattice, and let C be a
crosscut of L, which is given a partial order denoted by E to distinguish it from
the partial order ≤ in L. Let X consist of all non-empty subsets X of C such that
for any x ∈ X there is some c ∈ C satisfying c C x and

∧
X < c <

∨
X. Then,

µ(L) = γ̃ ({I ∈ Γ(L, C) | I 6⊇ X for any X ∈ X})(6.22)

or equivalently,

µ(L) =
∑

I∈P∗(C)
V

I=0̂,
W

I=1̂
I 6⊇X(∀X∈X)

(−1)|I| .(6.23)

Proof. Since X turns out as union-closed, the corollary follows from Theorem
6.4.8 and the correspondence between kernel operators and union-closed sets. 2

Example 6.4.10 Let L and C be as in Example 6.4.7. By putting dC b, dC e,
bCa and bCc a partial ordering relation E on C is defined, whose Hasse diagram
is shown in Figure 6.3. In connection with this partial ordering relation, X =
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{{a, c}, {b, e}, {c, e}} satisfies the requirements of Corollary 6.4.9, and thus µ(L)
can be expressed via (6.22) as the reduced Euler characteristic of the subcomplex

{{a}, {b}, {c}, {d}, {e}, {a, b}, {a, d}, {b, c}, {b, d}, {c, d}, {d, e}, {a, b, d}, {b, c, d}}

of Γ(L, C), which contains only 13 of the total 23 simplices of Γ(L, C). Moreover,
for the present choice of X it turns out that the sum on the right-hand side of
(6.23) contains only two of the eight terms that appear in the sum of (6.15).

eb

ca

d

Figure 6.3: Hasse diagram of {a, b, c, d, e} with respect to E.

Remarks. In view of Theorem 6.4.8 the corollary can be stated more generally
by requiring X to be a union-closed set of non-empty subsets of the above type.

By putting C = A(L) the corollary specializes to a result of Blass and Sagan
[BS97], which they used in computing and combinatorially explaining the Möbius
function of various lattices and in generalizing Stanley’s well-known theorem
[Sta72] that the characteristic polynomial of a semimodular supersolvable lat-
tice factors over the integers. As pointed out by Blass and Sagan [BS97], their
result generalizes a particular case of Rota’s broken circuit theorem [Rot64] as
well as a prior generalization of that particular case due to Sagan [Sag95]. For a
restatement of Rota’s result [Rot64], the following definitions are necessary:

Definition 6.4.11 Let L = [0̂, 1̂] be a finite lattice. A rank function of L is a
function r : L→ N ∪{0} such that r(0̂) = 0 and r(a) = r(b)+1 whenever a is an
immediate successor of b. It is well known and straightforward to prove that the
rank function is unique if it exists. A geometric lattice is a finite lattice L whose
rank function exists and satisfies r(a∧ b)+ r(a∨ b) ≤ r(a)+ r(b) for any a, b ∈ L.
A subset I of A(L) is independent if r(

∨
I) = |I|, and dependent otherwise. Each

minimal dependent subset of A(L) is called a circuit of L. Given a linear ordering
relation on A(L), each set C \ {max C}, where C is a circuit of L, is referred to
as a broken circuit of L. Note that this depends on the ordering of the atoms.
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Corollary 6.4.12 [Rot64] Let L = [0̂, 1̂] be a non-trivial geometric lattice with
rank function r. Furthermore, let the set of atoms A(L) be endowed with a linear
ordering relation, and let B consist of all broken circuits of L. Then,

µ(L) = (−1)r(1̂) × ∣∣ {I ⊆ A(L)
∣∣∨ I = 1̂ and I 6⊇ B for any B ∈ B}∣∣ .

Proof. [BS97] (Sketch) Let C = A(L) and X as in Corollary 6.4.9. Then, X ⊇ B
and any X ∈ X includes some B ∈ B. Thus, for any I ⊆ A(L), I 6⊇ X for any
X ∈ X if and only if I 6⊇ B for any B ∈ B. In this case, I is independent and
hence r(

∨
I) = |I|. Thus, Corollary 6.4.12 follows from Corollary 6.4.9. 2

So far, the results of this section as well as several of our earlier results rest
upon Theorem 3.2.4. It is therefore natural to generalize Theorem 3.2.4 from
power sets to partially ordered sets. We are thus led to the following definition:

Definition 6.4.13 Let P be a partially ordered set. A mapping k : P → P is a
kernel operator if for any x, y ∈ P ,

(i) k(x) ≤ x (intensionality),

(ii) x ≤ y ⇒ k(x) ≤ k(y) (monotonicity),

(iii) k(k(x)) = k(x) (idempotence).

Dually, a mapping c : P → P is a closure operator if for any x, y ∈ P ,

(i) x ≤ c(x) (extensionality),

(ii) x ≤ y ⇒ c(x) ≤ c(y) (monotonicity),

(iii) c(c(x)) = c(x) (idempotence).

An element x ∈ P is called k-open if k(x) = x and c-closed if c(x) = x.

Kernel and closure operators for partially ordered sets were introduced by
Ward [War42] and extensively studied by Rota [Rot64]; see also Aigner [Aig79].

The following result generalizes Theorem 3.2.4 to partially ordered sets. Con-
sequently, it also generalizes Whitney’s broken circuit theorem [Whi32] as well as
all results obtained in Section 3.2, Section 6.3 and the present section. As we will
see below, it additionally generalizes one of the most important classical results
of enumerative combinatorics, which is known as Weisner’s theorem [Wei35].

Theorem 6.4.14 [Doh99f] Let P be an upper-finite partially ordered set, and let
f and g be mappings from P into an abelian group such that f(x) =

∑
y≥x g(y)

for any x ∈ P . Furthermore, let k : P → P be a kernel operator, and let x0 be a
k-open element of P such that f(x) = 0 for any k-open x > x0. Then,

f(x0) =
∑

y : k(y)=x0

g(y) .
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The proof given below is due to an anonymous referee. For the author’s
original proof, which closely follows the proof of Theorem 3.2.4, see [Doh99f].

Proof. It suffices to show that
∑

y : k(y)>x0
g(y) = 0. Evidently, if x0 is maximal

in P , then this sum is empty, and hence the statement trivially holds. We proceed
by downward induction on x0. In this way, we obtain∑

y : k(y)>x0

g(y) =
∑
x>x0

x k-open

∑
y : k(y)=x

g(y) =
∑
x>x0

x k-open

f(x) = 0 ,

where the second equality comes from the induction hypothesis and the third
from the hypothesis of the theorem. 2

Dualizing Theorem 6.4.14 we obtain

Theorem 6.4.15 [Doh99f] Let P be a lower-finite partially ordered set, and let f
and g be mappings from P into an abelian group such that f(x) =

∑
y≤x g(y) for

any x ∈ P . Furthermore, let c : P → P be a closure operator and x0 a c-closed
element of P such that f(x) = 0 for any c-closed x < x0. Then,

f(x0) =
∑

y : c(y)=x0

g(y) .

From the preceding theorem we now deduce a prominent result of Rota [Rot64]
on the Möbius function of a lower-finite partially ordered set, which in turn
specializes to Weisner’s theorem [Wei35]. The proof is adopted from [Doh99f].

Corollary 6.4.16 [Rot64] Let P be a lower-finite partially ordered set with least
element 0̂ and c : P → P a closure operator where c(0̂) > 0̂. Then, for all x0 ∈ P ,∑

y : c(y)=x0

µP (y) = 0 .

Proof. For any x ∈ P define f(x) :=
∑

y≤x µP (y). There is nothing to prove if x0

is not c-closed. Otherwise, x0 6= 0̂ and hence by (5.3), f(x0) = 0. Likewise, one
finds that f(x) = 0 for any c-closed x < x0. Now apply Theorem 6.4.15. 2

Corollary 6.4.17 [Wei35] Let P be a lower-finite partially ordered set with least
element 0̂. Then, for any a > 0̂ and all x0 ∈ P ,∑

y : y∨a=x0

µP (y) = 0 .

Proof. Define c(y) := y ∨ a for any y ∈ P and apply Corollary 6.4.16. 2
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toral Dissertation, Fernuniversität Hagen, 1981.

[Hei82] K.D. Heidtmann, Improved method of inclusion-exclusion applied to k-out-of-n sys-
tems, IEEE Trans. Reliab. 31 (1982), no. 1, 36–40.

[Her72] A.P. Heron, Matroid polynomials, Combinatorics (D.J.A. Welsh and D.R. Woodall,
eds.), vol. X, The Institute of Combinatorics and Its Applications, Southend-on-Sea,
1972, pp. 164–202.

[How81] E. Howorka, A characterization of Ptolemaic graphs, J. Graph Theory 5 (1981),
323–331.

[Hun76] D. Hunter, An upper bound for the probability of a union, J. Appl. Prob. 13 (1976),
597–603.

[Hwa82] C.L. Hwang, Fast solutions for consecutive-k-out-of-n:F system, IEEE Trans. Re-
liab. 31 (1982), 447–448.

[Jor27] Ch. Jordan, The foundations of the theory of probability, Mat. Phys. Lapok 34
(1927), 109–136.

[JW81] R.E. Jamison-Waldner, Partition numbers for trees and ordered sets, Pacific J. Math.
96 (1981), 115–140.

[Kar82] R.M. Karp, Dynamic programming meets the principle of inclusion-exclusion, Oper.
Res. Lett. 1 (1982), 49–51.

[Kon80] J.M. Kontoleon, Reliability determination of a r-successive-out-of-n:F system, IEEE
Trans. Reliab. 29 (1980), 437.

[Kou68] E.G. Kounias, Bounds for the probability of a union of events, with applications,
Ann. Math. Statist. 39 (1968), 2154–2158.

[KP89] A. Kossow and W. Preuss, Reliability of consecutive-k-out-of-n:F systems with non-
identical component reliabilities, IEEE Trans. Reliab. 38 (1989), 229–233.

[Kru56] J.B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman
problem, Proc. Amer. Math. Soc. 7 (1956), 48–50.

[Kwe75a] S.M. Kwerel, Bounds on the probability of the union and intersection of m events,
Adv. Appl. Probab. 7 (1975), 431–448.

[Kwe75b] S.M. Kwerel, Most stringent bounds on aggregated probabilities of partially specified
dependent probability systems, J. Amer. Statist. Assoc. 70 (1975), 472–479.

[Laz90] F. Lazebnik, New upper bounds for the greatest number of proper colorings of a
(v, e)-graph, J. Graph Theory 14 (1990), 25–29.

[Loz92] E.L. Lozinskii, Counting propositional models, Inform. Process. Lett. 41 (1992),
326–332.

[Man90] Eckhard Manthei, Domination theory and network reliability analysis, J. Inf. Pro-
cess. Cybern. 27 (1990), 129–139.



BIBLIOGRAPHY 112

[Man91] Eckhard Manthei, Kombinatorische Methoden der Zuverlässigkeitsanalyse mono-
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[MS85] T.F. Móri and G.J. Székely, A note on the background of several Bonferroni-
Galambos-type inequality, J. Appl. Probab. 22 (1985), 836–843.

[Nar74] H. Narushima, Principle of inclusion-exclusion on semilattices, J. Combin. Theory
Ser. A 17 (1974), 196–203.

[Nar77] H. Narushima, Principle of Inclusion-Exclusion on Semilattices and Its Applications,
Ph.D. thesis, Waseda Univ., 1977.

[Nar82] H. Narushima, Principle of inclusion-exclusion on partially ordered sets, Discrete
Math. 42 (1982), 243–250.

[NW92] D.Q. Naiman and H.P. Wynn, Inclusion-exclusion-Bonferroni identities and inequal-
ities for discrete tube-like problems via Euler characteristics, Ann. Statist. 20 (1992),
43–76.

[NW97] D.Q. Naiman and H.P. Wynn, Abstract tubes, improved inclusion-exclusion identi-
ties and inequalities and importance sampling, Ann. Statist. 25 (1997), 1954–1983.
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